1
0
mirror of https://github.com/stargieg/bacnet-stack synced 2025-10-26 23:35:52 +08:00
Files
bacnet-stack/ports/bdk-atxx4-mstp/adc.c
2013-03-21 22:53:31 +01:00

172 lines
5.0 KiB
C

/**************************************************************************
*
* Copyright (C) 2009 Steve Karg <skarg@users.sourceforge.net>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*********************************************************************/
#include <stdbool.h>
#include <stdint.h>
#include "hardware.h"
/* me */
#include "adc.h"
/* prescale select bits */
#if (F_CPU >> 1) < 1000000
#define ADPS_8BIT (1)
#define ADPS_10BIT (3)
#elif (F_CPU >> 2) < 1000000
#define ADPS_8BIT (2)
#define ADPS_10BIT (4)
#elif (F_CPU >> 3) < 1000000
#define ADPS_8BIT (3)
#define ADPS_10BIT (5)
#elif (F_CPU >> 4) < 1000000
#define ADPS_8BIT (4)
#define ADPS_10BIT (6)
#elif (F_CPU >> 5) < 1000000
#define ADPS_8BIT (5)
#define ADPS_10BIT (7)
#else
#error "ADC: F_CPU too large for accuracy."
#endif
/* Array of ADC results */
#define ADC_CHANNELS_MAX 8
static volatile uint16_t Sample_Result[ADC_CHANNELS_MAX];
static volatile uint8_t Enabled_Channels;
ISR(ADC_vect)
{
uint8_t index;
uint8_t mask;
uint8_t channels;
uint16_t value = 0;
/* determine which conversion finished */
index = BITMASK_CHECK(ADMUX, ((1 << MUX2) | (1 << MUX1) | (1 << MUX0)));
/* read the results */
value = ADCL;
value |= (ADCH << 8);
Sample_Result[index] = value;
channels = Enabled_Channels;
__enable_interrupt();
/* clear the mux */
BITMASK_CLEAR(ADMUX, ((1 << MUX2) | (1 << MUX1) | (1 << MUX0)));
/* find the next enabled channel */
while (channels) {
index++;
if (index >= ADC_CHANNELS_MAX) {
index = 0;
}
mask = 1 << index;
if (channels & mask) {
break;
}
}
/* configure the next channel */
BITMASK_SET(ADMUX, ((index) << MUX0));
/* Start the next conversion */
BIT_SET(ADCSRA, ADSC);
}
void adc_enable(
uint8_t index)
{ /* 0..7 = ADC0..ADC7, respectively */
if (Enabled_Channels) {
/* ADC interupt is already started */
BIT_SET(Enabled_Channels, index);
} else {
if (index < ADC_CHANNELS_MAX) {
/* not running yet */
BIT_SET(Enabled_Channels, index);
/* clear the mux */
BITMASK_CLEAR(ADMUX, ((1 << MUX2) | (1 << MUX1) | (1 << MUX0)));
/* configure the channel */
BITMASK_SET(ADMUX, ((index) << MUX0));
/* Start the next conversion */
BIT_SET(ADCSRA, ADSC);
}
}
}
uint8_t adc_result_8bit(
uint8_t index)
{ /* 0..7 = ADC0..ADC7, respectively */
uint8_t result = 0;
uint8_t sreg;
if (index < ADC_CHANNELS_MAX) {
adc_enable(index);
sreg = SREG;
__disable_interrupt();
result = (uint8_t) (Sample_Result[index] >> 2);
SREG = sreg;
}
return result;
}
uint16_t adc_result_10bit(
uint8_t index)
{ /* 0..7 = ADC0..ADC7, respectively */
uint16_t result = 0;
uint8_t sreg;
if (index < ADC_CHANNELS_MAX) {
adc_enable(index);
sreg = SREG;
__disable_interrupt();
result = Sample_Result[index];
SREG = sreg;
}
return result;
}
void adc_init(
void)
{
/* Initial channel selection */
/* ADLAR = Left Adjust Result
REFSx = hardware setup: cap on AREF
*/
ADMUX = (0 << ADLAR) | (0 << REFS1) | (1 << REFS0);
/* ADEN = Enable
ADSC = Start conversion
ADIF = Interrupt Flag - write 1 to clear!
ADIE = Interrupt Enable
ADATE = Auto Trigger Enable
*/
ADCSRA =
(1 << ADEN) | (1 << ADIE) | (1 << ADIF) | (0 << ADATE) | ADPS_10BIT;
/* trigger selection bits
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event
*/
ADCSRB = (0 << ADTS2) | (0 << ADTS1) | (0 << ADTS0);
power_adc_enable();
}