package otto import ( "fmt" "math" "strings" "github.com/robertkrimen/otto/ast" "github.com/robertkrimen/otto/token" ) func (self *_runtime) evaluateConditionalExpression(node *ast.ConditionalExpression) Value { test := self.evaluate(node.Test) testValue := self.GetValue(test) if toBoolean(testValue) { return self.evaluate(node.Consequent) } return self.evaluate(node.Alternate) } func (self *_runtime) evaluateVariableExpression(node *ast.VariableExpression) Value { if node.Initializer != nil { // FIXME If reference is nil left := getIdentifierReference(self.LexicalEnvironment(), node.Name, false, node) right := self.evaluate(node.Initializer) rightValue := self.GetValue(right) self.PutValue(left, rightValue) } return toValue_string(node.Name) } func (self *_runtime) evaluateNew(node *ast.NewExpression) Value { callee := self.evaluate(node.Callee) calleeValue := self.GetValue(callee) argumentList := []Value{} for _, argumentNode := range node.ArgumentList { argumentList = append(argumentList, self.GetValue(self.evaluate(argumentNode))) } this := UndefinedValue() if !calleeValue.IsFunction() { panic(newTypeError("%v is not a function", calleeValue)) } return calleeValue._object().Construct(this, argumentList) } func (self *_runtime) evaluateArray(node *ast.ArrayLiteral) Value { valueArray := []Value{} for _, node := range node.Value { if node == nil { valueArray = append(valueArray, Value{}) } else { valueArray = append(valueArray, self.GetValue(self.evaluate(node))) } } result := self.newArrayOf(valueArray) return toValue_object(result) } func (self *_runtime) evaluateObject(node *ast.ObjectLiteral) Value { result := self.newObject() for _, property := range node.Value { switch property.Kind { case "value": result.defineProperty(property.Key, self.GetValue(self.evaluate(property.Value)), 0111, false) case "get": getter := self.newNodeFunction(property.Value.(*ast.FunctionExpression), self.LexicalEnvironment()) descriptor := _property{} descriptor.mode = 0211 descriptor.value = _propertyGetSet{getter, nil} result.defineOwnProperty(property.Key, descriptor, false) case "set": setter := self.newNodeFunction(property.Value.(*ast.FunctionExpression), self.LexicalEnvironment()) descriptor := _property{} descriptor.mode = 0211 descriptor.value = _propertyGetSet{nil, setter} result.defineOwnProperty(property.Key, descriptor, false) default: panic(fmt.Errorf("evaluateObject: invalid property.Kind: %v", property.Kind)) } } return toValue_object(result) } func (self *_runtime) evaluateRegExpLiteral(node *ast.RegExpLiteral) Value { return toValue_object(self._newRegExp(node.Pattern, node.Flags)) } func (self *_runtime) evaluateUnaryExpression(node *ast.UnaryExpression) Value { target := self.evaluate(node.Operand) switch node.Operator { case token.TYPEOF, token.DELETE: if target._valueType == valueReference && target.reference().IsUnresolvable() { if node.Operator == token.TYPEOF { return toValue_string("undefined") } return TrueValue() } } targetValue := self.GetValue(target) switch node.Operator { case token.NOT: if targetValue.toBoolean() { return FalseValue() } return TrueValue() case token.BITWISE_NOT: integerValue := toInt32(targetValue) return toValue_int32(^integerValue) case token.PLUS: return toValue_float64(targetValue.toFloat()) case token.MINUS: value := targetValue.toFloat() // TODO Test this sign := float64(-1) if math.Signbit(value) { sign = 1 } return toValue_float64(math.Copysign(value, sign)) case token.INCREMENT: if node.Postfix { // Postfix++ oldValue := targetValue.toFloat() newValue := toValue_float64(+1 + oldValue) self.PutValue(target.reference(), newValue) return toValue_float64(oldValue) } else { // ++Prefix newValue := toValue_float64(+1 + targetValue.toFloat()) self.PutValue(target.reference(), newValue) return newValue } case token.DECREMENT: if node.Postfix { // Postfix-- oldValue := targetValue.toFloat() newValue := toValue_float64(-1 + oldValue) self.PutValue(target.reference(), newValue) return toValue_float64(oldValue) } else { // --Prefix newValue := toValue_float64(-1 + targetValue.toFloat()) self.PutValue(target.reference(), newValue) return newValue } case token.VOID: return UndefinedValue() case token.DELETE: reference := target.reference() if reference == nil { return TrueValue() } return toValue_bool(target.reference().Delete()) case token.TYPEOF: switch targetValue._valueType { case valueUndefined: return toValue_string("undefined") case valueNull: return toValue_string("object") case valueBoolean: return toValue_string("boolean") case valueNumber: return toValue_string("number") case valueString: return toValue_string("string") case valueObject: if targetValue._object().functionValue().call != nil { return toValue_string("function") } return toValue_string("object") default: // ? } } panic(hereBeDragons()) } func (self *_runtime) evaluateMultiply(left float64, right float64) Value { // TODO 11.5.1 return UndefinedValue() } func (self *_runtime) evaluateDivide(left float64, right float64) Value { if math.IsNaN(left) || math.IsNaN(right) { return NaNValue() } if math.IsInf(left, 0) && math.IsInf(right, 0) { return NaNValue() } if left == 0 && right == 0 { return NaNValue() } if math.IsInf(left, 0) { if math.Signbit(left) == math.Signbit(right) { return positiveInfinityValue() } else { return negativeInfinityValue() } } if math.IsInf(right, 0) { if math.Signbit(left) == math.Signbit(right) { return positiveZeroValue() } else { return negativeZeroValue() } } if right == 0 { if math.Signbit(left) == math.Signbit(right) { return positiveInfinityValue() } else { return negativeInfinityValue() } } return toValue_float64(left / right) } func (self *_runtime) evaluateModulo(left float64, right float64) Value { // TODO 11.5.3 return UndefinedValue() } func (self *_runtime) calculateBinaryExpression(operator token.Token, left Value, right Value) Value { leftValue := self.GetValue(left) switch operator { // Additive case token.PLUS: leftValue = toPrimitive(leftValue) rightValue := self.GetValue(right) rightValue = toPrimitive(rightValue) if leftValue.IsString() || rightValue.IsString() { return toValue_string(strings.Join([]string{leftValue.toString(), rightValue.toString()}, "")) } else { return toValue_float64(leftValue.toFloat() + rightValue.toFloat()) } case token.MINUS: rightValue := self.GetValue(right) return toValue_float64(leftValue.toFloat() - rightValue.toFloat()) // Multiplicative case token.MULTIPLY: rightValue := self.GetValue(right) return toValue_float64(leftValue.toFloat() * rightValue.toFloat()) case token.SLASH: rightValue := self.GetValue(right) return self.evaluateDivide(leftValue.toFloat(), rightValue.toFloat()) case token.REMAINDER: rightValue := self.GetValue(right) return toValue_float64(math.Mod(leftValue.toFloat(), rightValue.toFloat())) // Logical case token.LOGICAL_AND: left := toBoolean(leftValue) if !left { return FalseValue() } return toValue_bool(toBoolean(self.GetValue(right))) case token.LOGICAL_OR: left := toBoolean(leftValue) if left { return TrueValue() } return toValue_bool(toBoolean(self.GetValue(right))) // Bitwise case token.AND: rightValue := self.GetValue(right) return toValue_int32(toInt32(leftValue) & toInt32(rightValue)) case token.OR: rightValue := self.GetValue(right) return toValue_int32(toInt32(leftValue) | toInt32(rightValue)) case token.EXCLUSIVE_OR: rightValue := self.GetValue(right) return toValue_int32(toInt32(leftValue) ^ toInt32(rightValue)) // Shift // (Masking of 0x1f is to restrict the shift to a maximum of 31 places) case token.SHIFT_LEFT: rightValue := self.GetValue(right) return toValue_int32(toInt32(leftValue) << (toUint32(rightValue) & 0x1f)) case token.SHIFT_RIGHT: rightValue := self.GetValue(right) return toValue_int32(toInt32(leftValue) >> (toUint32(rightValue) & 0x1f)) case token.UNSIGNED_SHIFT_RIGHT: rightValue := self.GetValue(right) // Shifting an unsigned integer is a logical shift return toValue_uint32(toUint32(leftValue) >> (toUint32(rightValue) & 0x1f)) case token.INSTANCEOF: rightValue := self.GetValue(right) if !rightValue.IsObject() { panic(newTypeError("Expecting a function in instanceof check, but got: %v", rightValue)) } return toValue_bool(rightValue._object().HasInstance(leftValue)) case token.IN: rightValue := self.GetValue(right) if !rightValue.IsObject() { panic(newTypeError()) } return toValue_bool(rightValue._object().hasProperty(toString(leftValue))) } panic(hereBeDragons(operator)) } func (self *_runtime) evaluateAssignExpression(node *ast.AssignExpression) Value { left := self.evaluate(node.Left) right := self.evaluate(node.Right) rightValue := self.GetValue(right) result := rightValue if node.Operator != token.ASSIGN { result = self.calculateBinaryExpression(node.Operator, left, rightValue) } self.PutValue(left.reference(), result) return result } func valueKindDispatchKey(left _valueType, right _valueType) int { return (int(left) << 2) + int(right) } var equalDispatch map[int](func(Value, Value) bool) = makeEqualDispatch() func makeEqualDispatch() map[int](func(Value, Value) bool) { key := valueKindDispatchKey return map[int](func(Value, Value) bool){ key(valueNumber, valueObject): func(x Value, y Value) bool { return x.toFloat() == y.toFloat() }, key(valueString, valueObject): func(x Value, y Value) bool { return x.toFloat() == y.toFloat() }, key(valueObject, valueNumber): func(x Value, y Value) bool { return x.toFloat() == y.toFloat() }, key(valueObject, valueString): func(x Value, y Value) bool { return x.toFloat() == y.toFloat() }, } } type _lessThanResult int const ( lessThanFalse _lessThanResult = iota lessThanTrue lessThanUndefined ) func calculateLessThan(left Value, right Value, leftFirst bool) _lessThanResult { x := UndefinedValue() y := x if leftFirst { x = toNumberPrimitive(left) y = toNumberPrimitive(right) } else { y = toNumberPrimitive(right) x = toNumberPrimitive(left) } result := false if x._valueType != valueString || y._valueType != valueString { x, y := x.toFloat(), y.toFloat() if math.IsNaN(x) || math.IsNaN(y) { return lessThanUndefined } result = x < y } else { x, y := x.toString(), y.toString() result = x < y } if result { return lessThanTrue } return lessThanFalse } var lessThanTable [4](map[_lessThanResult]bool) = [4](map[_lessThanResult]bool){ // < map[_lessThanResult]bool{ lessThanFalse: false, lessThanTrue: true, lessThanUndefined: false, }, // > map[_lessThanResult]bool{ lessThanFalse: false, lessThanTrue: true, lessThanUndefined: false, }, // <= map[_lessThanResult]bool{ lessThanFalse: true, lessThanTrue: false, lessThanUndefined: false, }, // >= map[_lessThanResult]bool{ lessThanFalse: true, lessThanTrue: false, lessThanUndefined: false, }, } func (self *_runtime) calculateComparison(comparator token.Token, left Value, right Value) bool { // FIXME Use strictEqualityComparison? // TODO This might be redundant now (with regards to evaluateComparison) x := self.GetValue(left) y := self.GetValue(right) kindEqualKind := false result := true negate := false switch comparator { case token.LESS: result = lessThanTable[0][calculateLessThan(x, y, true)] case token.GREATER: result = lessThanTable[1][calculateLessThan(y, x, false)] case token.LESS_OR_EQUAL: result = lessThanTable[2][calculateLessThan(y, x, false)] case token.GREATER_OR_EQUAL: result = lessThanTable[3][calculateLessThan(x, y, true)] case token.STRICT_NOT_EQUAL: negate = true fallthrough case token.STRICT_EQUAL: if x._valueType != y._valueType { result = false } else { kindEqualKind = true } case token.NOT_EQUAL: negate = true fallthrough case token.EQUAL: if x._valueType == y._valueType { kindEqualKind = true } else if x._valueType <= valueUndefined && y._valueType <= valueUndefined { result = true } else if x._valueType <= valueUndefined || y._valueType <= valueUndefined { result = false } else if x._valueType <= valueString && y._valueType <= valueString { result = x.toFloat() == y.toFloat() } else if x._valueType == valueBoolean { result = self.calculateComparison(token.EQUAL, toValue_float64(x.toFloat()), y) } else if y._valueType == valueBoolean { result = self.calculateComparison(token.EQUAL, x, toValue_float64(y.toFloat())) } else if x._valueType == valueObject { result = self.calculateComparison(token.EQUAL, toPrimitive(x), y) } else if y._valueType == valueObject { result = self.calculateComparison(token.EQUAL, x, toPrimitive(y)) } else { panic(hereBeDragons("Unable to test for equality: %v ==? %v", x, y)) } default: panic(fmt.Errorf("Unknown comparator %s", comparator.String())) } if kindEqualKind { switch x._valueType { case valueUndefined, valueNull: result = true case valueNumber: x := x.toFloat() y := y.toFloat() if math.IsNaN(x) || math.IsNaN(y) { result = false } else { result = x == y } case valueString: result = x.toString() == y.toString() case valueBoolean: result = x.toBoolean() == y.toBoolean() case valueObject: result = x._object() == y._object() default: goto ERROR } } if negate { result = !result } return result ERROR: panic(hereBeDragons("%v (%v) %s %v (%v)", x, x._valueType, comparator, y, y._valueType)) } func (self *_runtime) evaluateComparison(node *ast.BinaryExpression) Value { left := self.GetValue(self.evaluate(node.Left)) right := self.GetValue(self.evaluate(node.Right)) return toValue_bool(self.calculateComparison(node.Operator, left, right)) } func (self *_runtime) evaluateBinaryExpression(node *ast.BinaryExpression) Value { left := self.evaluate(node.Left) leftValue := self.GetValue(left) switch node.Operator { // Logical case token.LOGICAL_AND: if !toBoolean(leftValue) { return leftValue } right := self.evaluate(node.Right) return self.GetValue(right) case token.LOGICAL_OR: if toBoolean(leftValue) { return leftValue } right := self.evaluate(node.Right) return self.GetValue(right) } return self.calculateBinaryExpression(node.Operator, leftValue, self.evaluate(node.Right)) } func (self *_runtime) evaluateCall(node *ast.CallExpression, withArgumentList []interface{}) Value { callee := self.evaluate(node.Callee) calleeValue := self.GetValue(callee) argumentList := []Value{} if withArgumentList != nil { argumentList = self.toValueArray(withArgumentList...) } else { for _, argumentNode := range node.ArgumentList { argumentList = append(argumentList, self.GetValue(self.evaluate(argumentNode))) } } this := UndefinedValue() calleeReference := callee.reference() evalHint := false if calleeReference != nil { if calleeReference.IsPropertyReference() { calleeObject := calleeReference.GetBase().(*_object) this = toValue_object(calleeObject) } else { // TODO ImplictThisValue } if calleeReference.GetName() == "eval" { evalHint = true // Possible direct eval } } if !calleeValue.IsFunction() { panic(newTypeError("%v is not a function", calleeValue)) } return self.Call(calleeValue._object(), this, argumentList, evalHint) } func (self *_runtime) evaluateFunction(node *ast.FunctionExpression) Value { return toValue_object(self.newNodeFunction(node, self.LexicalEnvironment())) } func (self *_runtime) evaluateDotExpression(node *ast.DotExpression) Value { target := self.evaluate(node.Left) targetValue := self.GetValue(target) // TODO Pass in base value as-is, and defer toObject till later? object, err := self.objectCoerce(targetValue) if err != nil { panic(newTypeError(fmt.Sprintf("Cannot access member '%s' of %s", node.Identifier.Name, err.Error()))) } return toValue(newPropertyReference(object, node.Identifier.Name, false, node)) } func (self *_runtime) evaluateBracketExpression(node *ast.BracketExpression) Value { target := self.evaluate(node.Left) targetValue := self.GetValue(target) member := self.evaluate(node.Member) memberValue := self.GetValue(member) // TODO Pass in base value as-is, and defer toObject till later? return toValue(newPropertyReference(self.toObject(targetValue), toString(memberValue), false, node)) } func (self *_runtime) evaluateIdentifier(node *ast.Identifier) Value { name := node.Name // TODO Should be true or false (strictness) depending on context // getIdentifierReference should not return nil, but we check anyway and panic // so as not to propagate the nil into something else reference := getIdentifierReference(self.LexicalEnvironment(), name, false, node) if reference == nil { // Should never get here! panic(hereBeDragons("referenceError == nil: " + name)) } return toValue(reference) } func (self *_runtime) evaluateSequenceExpression(node *ast.SequenceExpression) Value { var result Value for _, node := range node.Sequence { result = self.evaluate(node) result = self.GetValue(result) } return result }