mirror of
https://github.com/robertkrimen/otto
synced 2025-10-12 20:27:30 +08:00

This change adds two types of tests: 1. First some regular Test* tests that functionally ensure the test cases are correct. 2. A few Benchmark* tests that then allow us to measure Otto's performance under various functional scenarios. The basic tests are just sorting, but I'm planning over time to bring in more advanced tests (like the CryptoAES) from popular benchmarking suites (JetStream for instance.) I intend to run profiler on these tests to find any ottlenecks or low-hanging fruit that can help speed up Otto for real-world use-cases. Next up after this is to add some heavy underscorejs benchmarks. Responding to PR comments
734 lines
23 KiB
Go
734 lines
23 KiB
Go
package otto
|
|
|
|
import (
|
|
"testing"
|
|
"math/rand"
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
func TestGoSliceQuickSort(t *testing.T) {
|
|
testGoSliceSort("quickSort(testSlice, 0, testSlice.length-1);", jsQuickSort, t)
|
|
}
|
|
|
|
func TestGoSliceHeapSort(t *testing.T) {
|
|
testGoSliceSort("heapSort(testSlice)", jsHeapSort, t)
|
|
}
|
|
|
|
func TestJsArrayQuicksort(t *testing.T) {
|
|
testJsArraySort("quickSort(testSlice, 0, testSlice.length-1);", jsQuickSort, t)
|
|
}
|
|
|
|
func TestJsArrayHeapSort(t *testing.T) {
|
|
testJsArraySort("heapSort(testSlice)", jsHeapSort, t)
|
|
}
|
|
|
|
func TestJsArrayMergeSort(t *testing.T) {
|
|
testJsArraySort("testSlice = mergeSort(testSlice)", jsMergeSort, t)
|
|
}
|
|
|
|
func TestCryptoAes(t *testing.T) {
|
|
tt(t, func() {
|
|
_, vm := test()
|
|
_, err := vm.Run(jsCryptoAES)
|
|
is(err, nil)
|
|
})
|
|
}
|
|
|
|
func BenchmarkGoSliceQuickSort100000000(b *testing.B) {
|
|
benchmarkGoSliceSort(100000000, "quickSort(testSlice, 0, testSlice.length-1);", jsQuickSort, b)
|
|
}
|
|
|
|
func BenchmarkGoSliceHeapSort100000000(b *testing.B) {
|
|
benchmarkGoSliceSort(100000000, "heapSort(testSlice);", jsHeapSort, b)
|
|
}
|
|
|
|
func BenchmarkJsArrayQuickSort10000(b *testing.B) {
|
|
benchmarkJsArraySort(10000, "quickSort(testSlice, 0, testSlice.length-1);", jsQuickSort, b)
|
|
}
|
|
|
|
func BenchmarkJsArrayMergeSort10000(b *testing.B) {
|
|
benchmarkJsArraySort(10000, "mergeSort(testSlice);", jsMergeSort, b)
|
|
}
|
|
|
|
func BenchmarkJsArrayHeapSort10000(b *testing.B) {
|
|
benchmarkJsArraySort(10000, "heapSort(testSlice);", jsHeapSort, b)
|
|
}
|
|
|
|
func BenchmarkCryptoAES(b *testing.B) {
|
|
|
|
vm := New()
|
|
|
|
// Make sure VM creation time is not counted in runtime test
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
vm.Run(jsCryptoAES)
|
|
}
|
|
}
|
|
|
|
func testGoSliceSort(sortFuncCall string, sortCode string, t *testing.T) {
|
|
tt(t, func() {
|
|
test, vm := test()
|
|
|
|
// inject quicksort code
|
|
_, err := vm.Run(sortCode)
|
|
is(err, nil)
|
|
|
|
testSlice := []int{5, 3, 2, 4, 1}
|
|
vm.Set("testSlice", testSlice)
|
|
_, err = vm.Run(sortFuncCall)
|
|
is(err, nil)
|
|
|
|
is(test(`testSlice[0]`).export(), 1)
|
|
is(test(`testSlice[1]`).export(), 2)
|
|
is(test(`testSlice[2]`).export(), 3)
|
|
is(test(`testSlice[3]`).export(), 4)
|
|
is(test(`testSlice[4]`).export(), 5)
|
|
|
|
is(testSlice[0], 1)
|
|
is(testSlice[1], 2)
|
|
is(testSlice[2], 3)
|
|
is(testSlice[3], 4)
|
|
is(testSlice[4], 5)
|
|
})
|
|
}
|
|
|
|
func testJsArraySort(sortFuncCall string, sortCode string, t *testing.T) {
|
|
tt(t, func() {
|
|
test, vm := test()
|
|
|
|
// inject quicksort code
|
|
vm.Run(sortCode)
|
|
|
|
vm.Run("var testSlice = [5, 3, 2, 4, 1];")
|
|
_, err := vm.Run(sortFuncCall)
|
|
is(err, nil)
|
|
|
|
is(test(`testSlice[0]`).export(), 1)
|
|
is(test(`testSlice[1]`).export(), 2)
|
|
is(test(`testSlice[2]`).export(), 3)
|
|
is(test(`testSlice[3]`).export(), 4)
|
|
is(test(`testSlice[4]`).export(), 5)
|
|
})
|
|
}
|
|
|
|
func benchmarkGoSliceSort(size int, sortFuncCall string, sortCode string, b *testing.B) {
|
|
// generate arbitrary slice of 'size'
|
|
testSlice := make([]int, size)
|
|
for i := 0; i < size; i++ {
|
|
testSlice[i] = rand.Int()
|
|
}
|
|
|
|
vm := New()
|
|
|
|
// inject the sorting code
|
|
vm.Run(sortCode)
|
|
|
|
// Reset timer - everything until this point may have taken a long time
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
vm.Run(sortFuncCall)
|
|
}
|
|
}
|
|
|
|
func benchmarkJsArraySort(size int, sortFuncCall string, sortCode string, b *testing.B) {
|
|
// generate arbitrary slice of 'size'
|
|
testSlice := make([]string, size)
|
|
for i, _ := range testSlice {
|
|
testSlice[i] = fmt.Sprintf("%d", rand.Int())
|
|
}
|
|
|
|
jsArrayString := "[" + strings.Join(testSlice, ",") + "]"
|
|
|
|
vm := New()
|
|
|
|
// inject the test array
|
|
vm.Run("testSlice = " + jsArrayString)
|
|
|
|
// inject the sorting code
|
|
vm.Run(sortCode)
|
|
|
|
// Reset timer - everything until this point may have taken a long time
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
vm.Run(sortFuncCall)
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/**********************************************************************************************************************/
|
|
// Appendix - all the Javascript algorithm code constants
|
|
|
|
const jsQuickSort = `
|
|
function quickSort(arr, left, right){
|
|
var len = arr.length,
|
|
pivot,
|
|
partitionIndex;
|
|
|
|
|
|
if(left < right){
|
|
pivot = right;
|
|
partitionIndex = partition(arr, pivot, left, right);
|
|
|
|
// sort left and right
|
|
quickSort(arr, left, partitionIndex - 1);
|
|
quickSort(arr, partitionIndex + 1, right);
|
|
}
|
|
return arr;
|
|
}
|
|
|
|
function partition(arr, pivot, left, right){
|
|
var pivotValue = arr[pivot],
|
|
partitionIndex = left;
|
|
|
|
for(var i = left; i < right; i++){
|
|
if(arr[i] < pivotValue){
|
|
swap(arr, i, partitionIndex);
|
|
partitionIndex++;
|
|
}
|
|
}
|
|
swap(arr, right, partitionIndex);
|
|
return partitionIndex;
|
|
}
|
|
|
|
|
|
|
|
function swap(arr, i, j){
|
|
var temp = arr[i];
|
|
arr[i] = arr[j];
|
|
arr[j] = temp;
|
|
}
|
|
|
|
`
|
|
|
|
|
|
const jsMergeSort = `
|
|
|
|
function mergeSort(arr){
|
|
var len = arr.length;
|
|
if(len <2)
|
|
return arr;
|
|
var mid = Math.floor(len/2),
|
|
left = arr.slice(0,mid),
|
|
right =arr.slice(mid);
|
|
// send left and right to the mergeSort to broke it down into pieces
|
|
// then merge those
|
|
return merge(mergeSort(left),mergeSort(right));
|
|
}
|
|
|
|
|
|
function merge(left, right){
|
|
var result = [],
|
|
lLen = left.length,
|
|
rLen = right.length,
|
|
l = 0,
|
|
r = 0;
|
|
while(l < lLen && r < rLen){
|
|
if(left[l] < right[r]){
|
|
result.push(left[l++]);
|
|
}
|
|
else{
|
|
result.push(right[r++]);
|
|
}
|
|
}
|
|
// remaining part needs to be addred to the result
|
|
return result.concat(left.slice(l)).concat(right.slice(r));
|
|
}
|
|
|
|
`
|
|
|
|
|
|
const jsHeapSort = `
|
|
|
|
function heapSort(arr){
|
|
var len = arr.length,
|
|
end = len-1;
|
|
|
|
heapify(arr, len);
|
|
|
|
while(end > 0){
|
|
swap(arr, end--, 0);
|
|
siftDown(arr, 0, end);
|
|
}
|
|
return arr;
|
|
}
|
|
|
|
|
|
function heapify(arr, len){
|
|
// break the array into root + two sides, to create tree (heap)
|
|
var mid = Math.floor((len-2)/2);
|
|
while(mid >= 0){
|
|
siftDown(arr, mid--, len-1);
|
|
}
|
|
}
|
|
|
|
function siftDown(arr, start, end){
|
|
var root = start,
|
|
child = root*2 + 1,
|
|
toSwap = root;
|
|
while(child <= end){
|
|
if(arr[toSwap] < arr[child]){
|
|
swap(arr, toSwap, child);
|
|
}
|
|
if(child+1 <= end && arr[toSwap] < arr[child+1]){
|
|
swap(arr, toSwap, child+1)
|
|
}
|
|
if(toSwap != root){
|
|
swap(arr, root, toSwap);
|
|
root = toSwap;
|
|
}
|
|
else{
|
|
return;
|
|
}
|
|
toSwap = root;
|
|
child = root*2+1
|
|
}
|
|
}
|
|
|
|
|
|
function swap(arr, i, j){
|
|
var temp = arr[i];
|
|
arr[i] = arr[j];
|
|
arr[j] = temp;
|
|
}
|
|
|
|
|
|
`
|
|
|
|
|
|
// Copied from JetStream benchmarking suite
|
|
// http://browserbench.org/JetStream/sources/crypto-aes.js
|
|
const jsCryptoAES = `
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
|
/*
|
|
* AES Cipher function: encrypt 'input' with Rijndael algorithm
|
|
*
|
|
* takes byte-array 'input' (16 bytes)
|
|
* 2D byte-array key schedule 'w' (Nr+1 x Nb bytes)
|
|
*
|
|
* applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage
|
|
*
|
|
* returns byte-array encrypted value (16 bytes)
|
|
*/
|
|
function Cipher(input, w) { // main Cipher function [§5.1]
|
|
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
|
|
var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys
|
|
|
|
var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4]
|
|
for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i];
|
|
|
|
state = AddRoundKey(state, w, 0, Nb);
|
|
|
|
for (var round=1; round<Nr; round++) {
|
|
state = SubBytes(state, Nb);
|
|
state = ShiftRows(state, Nb);
|
|
state = MixColumns(state, Nb);
|
|
state = AddRoundKey(state, w, round, Nb);
|
|
}
|
|
|
|
state = SubBytes(state, Nb);
|
|
state = ShiftRows(state, Nb);
|
|
state = AddRoundKey(state, w, Nr, Nb);
|
|
|
|
var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4]
|
|
for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)];
|
|
return output;
|
|
}
|
|
|
|
|
|
function SubBytes(s, Nb) { // apply SBox to state S [§5.1.1]
|
|
for (var r=0; r<4; r++) {
|
|
for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]];
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
function ShiftRows(s, Nb) { // shift row r of state S left by r bytes [§5.1.2]
|
|
var t = new Array(4);
|
|
for (var r=1; r<4; r++) {
|
|
for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy
|
|
for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back
|
|
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
|
|
return s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
|
|
}
|
|
|
|
|
|
function MixColumns(s, Nb) { // combine bytes of each col of state S [§5.1.3]
|
|
for (var c=0; c<4; c++) {
|
|
var a = new Array(4); // 'a' is a copy of the current column from 's'
|
|
var b = new Array(4); // 'b' is a•{02} in GF(2^8)
|
|
for (var i=0; i<4; i++) {
|
|
a[i] = s[i][c];
|
|
b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1;
|
|
}
|
|
// a[n] ^ b[n] is a•{03} in GF(2^8)
|
|
s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3
|
|
s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3
|
|
s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3
|
|
s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4]
|
|
for (var r=0; r<4; r++) {
|
|
for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r];
|
|
}
|
|
return state;
|
|
}
|
|
|
|
|
|
function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2]
|
|
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
|
|
var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys
|
|
var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys
|
|
|
|
var w = new Array(Nb*(Nr+1));
|
|
var temp = new Array(4);
|
|
|
|
for (var i=0; i<Nk; i++) {
|
|
var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]];
|
|
w[i] = r;
|
|
}
|
|
|
|
for (var i=Nk; i<(Nb*(Nr+1)); i++) {
|
|
w[i] = new Array(4);
|
|
for (var t=0; t<4; t++) temp[t] = w[i-1][t];
|
|
if (i % Nk == 0) {
|
|
temp = SubWord(RotWord(temp));
|
|
for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t];
|
|
} else if (Nk > 6 && i%Nk == 4) {
|
|
temp = SubWord(temp);
|
|
}
|
|
for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t];
|
|
}
|
|
|
|
return w;
|
|
}
|
|
|
|
function SubWord(w) { // apply SBox to 4-byte word w
|
|
for (var i=0; i<4; i++) w[i] = Sbox[w[i]];
|
|
return w;
|
|
}
|
|
|
|
function RotWord(w) { // rotate 4-byte word w left by one byte
|
|
w[4] = w[0];
|
|
for (var i=0; i<4; i++) w[i] = w[i+1];
|
|
return w;
|
|
}
|
|
|
|
|
|
// Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1]
|
|
var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
|
|
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
|
|
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
|
|
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
|
|
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
|
|
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
|
|
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
|
|
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
|
|
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
|
|
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
|
|
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
|
|
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
|
|
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
|
|
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
|
|
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
|
|
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16];
|
|
|
|
// Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
|
|
var Rcon = [ [0x00, 0x00, 0x00, 0x00],
|
|
[0x01, 0x00, 0x00, 0x00],
|
|
[0x02, 0x00, 0x00, 0x00],
|
|
[0x04, 0x00, 0x00, 0x00],
|
|
[0x08, 0x00, 0x00, 0x00],
|
|
[0x10, 0x00, 0x00, 0x00],
|
|
[0x20, 0x00, 0x00, 0x00],
|
|
[0x40, 0x00, 0x00, 0x00],
|
|
[0x80, 0x00, 0x00, 0x00],
|
|
[0x1b, 0x00, 0x00, 0x00],
|
|
[0x36, 0x00, 0x00, 0x00] ];
|
|
|
|
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
|
/*
|
|
* Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation
|
|
* - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
|
|
* for each block
|
|
* - outputblock = cipher(counter, key)
|
|
* - cipherblock = plaintext xor outputblock
|
|
*/
|
|
function AESEncryptCtr(plaintext, password, nBits) {
|
|
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
|
|
|
|
// for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password;
|
|
// for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1
|
|
var nBytes = nBits/8; // no bytes in key
|
|
var pwBytes = new Array(nBytes);
|
|
for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;
|
|
var key = Cipher(pwBytes, KeyExpansion(pwBytes));
|
|
key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long
|
|
|
|
// initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes,
|
|
// block counter in 2nd 8 bytes
|
|
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
|
|
var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
|
|
var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970
|
|
|
|
// encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops
|
|
for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff;
|
|
for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff;
|
|
|
|
// generate key schedule - an expansion of the key into distinct Key Rounds for each round
|
|
var keySchedule = KeyExpansion(key);
|
|
|
|
var blockCount = Math.ceil(plaintext.length/blockSize);
|
|
var ciphertext = new Array(blockCount); // ciphertext as array of strings
|
|
|
|
for (var b=0; b<blockCount; b++) {
|
|
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
|
|
// again done in two stages for 32-bit ops
|
|
for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff;
|
|
for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8)
|
|
|
|
var cipherCntr = Cipher(counterBlock, keySchedule); // -- encrypt counter block --
|
|
|
|
// calculate length of final block:
|
|
var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1;
|
|
|
|
var ct = '';
|
|
for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter byte-by-byte --
|
|
var plaintextByte = plaintext.charCodeAt(b*blockSize+i);
|
|
var cipherByte = plaintextByte ^ cipherCntr[i];
|
|
ct += String.fromCharCode(cipherByte);
|
|
}
|
|
// ct is now ciphertext for this block
|
|
|
|
ciphertext[b] = escCtrlChars(ct); // escape troublesome characters in ciphertext
|
|
}
|
|
|
|
// convert the nonce to a string to go on the front of the ciphertext
|
|
var ctrTxt = '';
|
|
for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]);
|
|
ctrTxt = escCtrlChars(ctrTxt);
|
|
|
|
// use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency
|
|
return ctrTxt + '-' + ciphertext.join('-');
|
|
}
|
|
|
|
|
|
/*
|
|
* Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation
|
|
*
|
|
* for each block
|
|
* - outputblock = cipher(counter, key)
|
|
* - cipherblock = plaintext xor outputblock
|
|
*/
|
|
function AESDecryptCtr(ciphertext, password, nBits) {
|
|
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
|
|
|
|
var nBytes = nBits/8; // no bytes in key
|
|
var pwBytes = new Array(nBytes);
|
|
for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;
|
|
var pwKeySchedule = KeyExpansion(pwBytes);
|
|
var key = Cipher(pwBytes, pwKeySchedule);
|
|
key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long
|
|
|
|
var keySchedule = KeyExpansion(key);
|
|
|
|
ciphertext = ciphertext.split('-'); // split ciphertext into array of block-length strings
|
|
|
|
// recover nonce from 1st element of ciphertext
|
|
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
|
|
var counterBlock = new Array(blockSize);
|
|
var ctrTxt = unescCtrlChars(ciphertext[0]);
|
|
for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i);
|
|
|
|
var plaintext = new Array(ciphertext.length-1);
|
|
|
|
for (var b=1; b<ciphertext.length; b++) {
|
|
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
|
|
for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff;
|
|
for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff;
|
|
|
|
var cipherCntr = Cipher(counterBlock, keySchedule); // encrypt counter block
|
|
|
|
ciphertext[b] = unescCtrlChars(ciphertext[b]);
|
|
|
|
var pt = '';
|
|
for (var i=0; i<ciphertext[b].length; i++) {
|
|
// -- xor plaintext with ciphered counter byte-by-byte --
|
|
var ciphertextByte = ciphertext[b].charCodeAt(i);
|
|
var plaintextByte = ciphertextByte ^ cipherCntr[i];
|
|
pt += String.fromCharCode(plaintextByte);
|
|
}
|
|
// pt is now plaintext for this block
|
|
|
|
plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext
|
|
}
|
|
|
|
return plaintext.join('');
|
|
}
|
|
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
|
function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext
|
|
return str.replace(/[\0\t\n\v\f\r\xa0'"!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; });
|
|
} // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker
|
|
|
|
function unescCtrlChars(str) { // unescape potentially problematic control characters
|
|
return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); });
|
|
}
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
|
/*
|
|
* if escCtrlChars()/unescCtrlChars() still gives problems, use encodeBase64()/decodeBase64() instead
|
|
*/
|
|
var b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
|
|
|
|
function encodeBase64(str) { // http://tools.ietf.org/html/rfc4648
|
|
var o1, o2, o3, h1, h2, h3, h4, bits, i=0, enc='';
|
|
|
|
str = encodeUTF8(str); // encode multi-byte chars into UTF-8 for byte-array
|
|
|
|
do { // pack three octets into four hexets
|
|
o1 = str.charCodeAt(i++);
|
|
o2 = str.charCodeAt(i++);
|
|
o3 = str.charCodeAt(i++);
|
|
|
|
bits = o1<<16 | o2<<8 | o3;
|
|
|
|
h1 = bits>>18 & 0x3f;
|
|
h2 = bits>>12 & 0x3f;
|
|
h3 = bits>>6 & 0x3f;
|
|
h4 = bits & 0x3f;
|
|
|
|
// end of string? index to '=' in b64
|
|
if (isNaN(o3)) h4 = 64;
|
|
if (isNaN(o2)) h3 = 64;
|
|
|
|
// use hexets to index into b64, and append result to encoded string
|
|
enc += b64.charAt(h1) + b64.charAt(h2) + b64.charAt(h3) + b64.charAt(h4);
|
|
} while (i < str.length);
|
|
|
|
return enc;
|
|
}
|
|
|
|
function decodeBase64(str) {
|
|
var o1, o2, o3, h1, h2, h3, h4, bits, i=0, enc='';
|
|
|
|
do { // unpack four hexets into three octets using index points in b64
|
|
h1 = b64.indexOf(str.charAt(i++));
|
|
h2 = b64.indexOf(str.charAt(i++));
|
|
h3 = b64.indexOf(str.charAt(i++));
|
|
h4 = b64.indexOf(str.charAt(i++));
|
|
|
|
bits = h1<<18 | h2<<12 | h3<<6 | h4;
|
|
|
|
o1 = bits>>16 & 0xff;
|
|
o2 = bits>>8 & 0xff;
|
|
o3 = bits & 0xff;
|
|
|
|
if (h3 == 64) enc += String.fromCharCode(o1);
|
|
else if (h4 == 64) enc += String.fromCharCode(o1, o2);
|
|
else enc += String.fromCharCode(o1, o2, o3);
|
|
} while (i < str.length);
|
|
|
|
return decodeUTF8(enc); // decode UTF-8 byte-array back to Unicode
|
|
}
|
|
|
|
function encodeUTF8(str) { // encode multi-byte string into utf-8 multiple single-byte characters
|
|
str = str.replace(
|
|
/[\u0080-\u07ff]/g, // U+0080 - U+07FF = 2-byte chars
|
|
function(c) {
|
|
var cc = c.charCodeAt(0);
|
|
return String.fromCharCode(0xc0 | cc>>6, 0x80 | cc&0x3f); }
|
|
);
|
|
str = str.replace(
|
|
/[\u0800-\uffff]/g, // U+0800 - U+FFFF = 3-byte chars
|
|
function(c) {
|
|
var cc = c.charCodeAt(0);
|
|
return String.fromCharCode(0xe0 | cc>>12, 0x80 | cc>>6&0x3F, 0x80 | cc&0x3f); }
|
|
);
|
|
return str;
|
|
}
|
|
|
|
function decodeUTF8(str) { // decode utf-8 encoded string back into multi-byte characters
|
|
str = str.replace(
|
|
/[\u00c0-\u00df][\u0080-\u00bf]/g, // 2-byte chars
|
|
function(c) {
|
|
var cc = (c.charCodeAt(0)&0x1f)<<6 | c.charCodeAt(1)&0x3f;
|
|
return String.fromCharCode(cc); }
|
|
);
|
|
str = str.replace(
|
|
/[\u00e0-\u00ef][\u0080-\u00bf][\u0080-\u00bf]/g, // 3-byte chars
|
|
function(c) {
|
|
var cc = (c.charCodeAt(0)&0x0f)<<12 | (c.charCodeAt(1)&0x3f<<6) | c.charCodeAt(2)&0x3f;
|
|
return String.fromCharCode(cc); }
|
|
);
|
|
return str;
|
|
}
|
|
|
|
|
|
function byteArrayToHexStr(b) { // convert byte array to hex string for displaying test vectors
|
|
var s = '';
|
|
for (var i=0; i<b.length; i++) s += b[i].toString(16) + ' ';
|
|
return s;
|
|
}
|
|
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
|
|
|
var plainText = "ROMEO: But, soft! what light through yonder window breaks?\n\
|
|
It is the east, and Juliet is the sun.\n\
|
|
Arise, fair sun, and kill the envious moon,\n\
|
|
Who is already sick and pale with grief,\n\
|
|
That thou her maid art far more fair than she:\n\
|
|
Be not her maid, since she is envious;\n\
|
|
Her vestal livery is but sick and green\n\
|
|
And none but fools do wear it; cast it off.\n\
|
|
It is my lady, O, it is my love!\n\
|
|
O, that she knew she were!\n\
|
|
She speaks yet she says nothing: what of that?\n\
|
|
Her eye discourses; I will answer it.\n\
|
|
I am too bold, 'tis not to me she speaks:\n\
|
|
Two of the fairest stars in all the heaven,\n\
|
|
Having some business, do entreat her eyes\n\
|
|
To twinkle in their spheres till they return.\n\
|
|
What if her eyes were there, they in her head?\n\
|
|
The brightness of her cheek would shame those stars,\n\
|
|
As daylight doth a lamp; her eyes in heaven\n\
|
|
Would through the airy region stream so bright\n\
|
|
That birds would sing and think it were not night.\n\
|
|
See, how she leans her cheek upon her hand!\n\
|
|
O, that I were a glove upon that hand,\n\
|
|
That I might touch that cheek!\n\
|
|
JULIET: Ay me!\n\
|
|
ROMEO: She speaks:\n\
|
|
O, speak again, bright angel! for thou art\n\
|
|
As glorious to this night, being o'er my head\n\
|
|
As is a winged messenger of heaven\n\
|
|
Unto the white-upturned wondering eyes\n\
|
|
Of mortals that fall back to gaze on him\n\
|
|
When he bestrides the lazy-pacing clouds\n\
|
|
And sails upon the bosom of the air.";
|
|
|
|
var password = "O Romeo, Romeo! wherefore art thou Romeo?";
|
|
|
|
var cipherText = AESEncryptCtr(plainText, password, 256);
|
|
var decryptedText = AESDecryptCtr(cipherText, password, 256);
|
|
|
|
if (decryptedText != plainText)
|
|
throw "ERROR: bad result: expected " + plainText + " but got " + decryptedText;
|
|
`
|
|
|