/* p_mach.cpp -- pack Mach Object executable This file is part of the UPX executable compressor. Copyright (C) 2004-2009 John Reiser All Rights Reserved. UPX and the UCL library are free software; you can redistribute them and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. John Reiser */ #include "conf.h" #include "file.h" #include "filter.h" #include "linker.h" #include "packer.h" #include "p_mach.h" #include "ui.h" static const #include "stub/powerpc-darwin.macho-entry.h" static const #include "stub/powerpc-darwin.macho-fold.h" static const #include "stub/i386-darwin.macho-entry.h" static const #include "stub/i386-darwin.macho-fold.h" static const #include "stub/arm-darwin.macho-entry.h" static const #include "stub/arm-darwin.macho-fold.h" // Packing a Darwin (Mach-o) Mac OS X dylib (dynamic shared library) // is restricted. UPX gets control as the -init function, at the very // end of processing by dyld. Relocation, loading of dependent libraries, // etc., already have taken place before decompression. So the Mach-o // headers, the __IMPORT segment, the __LINKEDIT segment, anything // that is modifed by relocation, etc., cannot be compressed. // We simplify arbitrarily by compressing only the __TEXT segment, // which must be the first segment. static const #include "stub/i386-darwin.dylib-entry.h" // The runtime stub for the dyld -init routine does not use "fold"ed code. //#include "stub/i386-darwin.dylib-fold.h" template PackMachBase::PackMachBase(InputFile *f, unsigned cputype, unsigned filetype, unsigned flavor, unsigned count, unsigned size) : super(f), my_cputype(cputype), my_filetype(filetype), my_thread_flavor(flavor), my_thread_state_word_count(count), my_thread_command_size(size), n_segment(0), rawmseg(NULL), msegcmd(NULL), o_routines_cmd(0), prev_init_address(0) { MachClass::compileTimeAssertions(); bele = N_BELE_CTP::getRTP((const BeLePolicy*) NULL); } template PackMachBase::~PackMachBase() { delete [] rawmseg; delete [] msegcmd; } PackDylibI386::PackDylibI386(InputFile *f) : super(f) { my_filetype = Mach_header::MH_DYLIB; } template const int *PackMachBase::getCompressionMethods(int method, int level) const { // There really is no LE bias. return Packer::getDefaultCompressionMethods_le32(method, level); } const int *PackMachARMEL::getCompressionMethods(int method, int level) const { return Packer::getDefaultCompressionMethods_8(method, level); } const int *PackMachPPC32::getFilters() const { static const int filters[] = { 0xd0, FT_END }; return filters; } int const *PackMachI386::getFilters() const { static const int filters[] = { 0x49, FT_END }; return filters; } int const *PackMachARMEL::getFilters() const { static const int filters[] = { 0x50, FT_END }; return filters; } Linker *PackMachPPC32::newLinker() const { return new ElfLinkerPpc32; } Linker *PackMachI386::newLinker() const { return new ElfLinkerX86; } Linker *PackMachARMEL::newLinker() const { return new ElfLinkerArmLE; } template void PackMachBase::addStubEntrySections(Filter const *) { addLoader("MACOS000", NULL); //addLoader(getDecompressorSections(), NULL); addLoader( ( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL" : M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL" : M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL" : M_IS_LZMA(ph.method) ? "LZMA_ELF00,LZMA_DEC20,LZMA_DEC30" : NULL), NULL); if (hasLoaderSection("CFLUSH")) addLoader("CFLUSH"); addLoader("ELFMAINY,IDENTSTR,+40,ELFMAINZ,FOLDEXEC", NULL); } void PackMachI386::addStubEntrySections(Filter const *ft) { int const n_mru = ft->n_mru; // FIXME: belongs to filter? packerf? // entry to stub addLoader("LEXEC000", NULL); if (ft->id) { { // decompr, unfilter are separate addLoader("LXUNF000", NULL); addLoader("LXUNF002", NULL); if (0x80==(ft->id & 0xF0)) { if (256==n_mru) { addLoader("MRUBYTE0", NULL); } else if (n_mru) { addLoader("LXMRU005", NULL); } if (n_mru) { addLoader("LXMRU006", NULL); } else { addLoader("LXMRU007", NULL); } } else if (0x40==(ft->id & 0xF0)) { addLoader("LXUNF008", NULL); } addLoader("LXUNF010", NULL); } if (n_mru) { addLoader("LEXEC009", NULL); } } addLoader("LEXEC010", NULL); addLoader(getDecompressorSections(), NULL); addLoader("LEXEC015", NULL); if (ft->id) { { // decompr, unfilter are separate if (0x80!=(ft->id & 0xF0)) { addLoader("LXUNF042", NULL); } } addFilter32(ft->id); { // decompr, unfilter are separate if (0x80==(ft->id & 0xF0)) { if (0==n_mru) { addLoader("LXMRU058", NULL); } } addLoader("LXUNF035", NULL); } } else { addLoader("LEXEC017", NULL); } addLoader("IDENTSTR", NULL); addLoader("LEXEC020", NULL); addLoader("FOLDEXEC", NULL); } void PackMachARMEL::addStubEntrySections(Filter const */*ft*/) { addLoader("MACHMAINX", NULL); //addLoader(getDecompressorSections(), NULL); addLoader( ( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL" : M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL" : M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL" : M_IS_LZMA(ph.method) ? "LZMA_ELF00,+80C,LZMA_DEC20,LZMA_DEC30" : NULL), NULL); if (hasLoaderSection("CFLUSH")) addLoader("CFLUSH"); addLoader("MACHMAINY,IDENTSTR,+40,MACHMAINZ,FOLDEXEC", NULL); } template void PackMachBase::defineSymbols(Filter const *) { // empty } template void PackMachBase::buildMachLoader( upx_byte const *const proto, unsigned const szproto, upx_byte const *const fold, unsigned const szfold, Filter const *ft ) { initLoader(proto, szproto); struct b_info h; memset(&h, 0, sizeof(h)); unsigned fold_hdrlen = 0; if (0 < szfold) { h.sz_unc = (szfold < fold_hdrlen) ? 0 : (szfold - fold_hdrlen); h.b_method = (unsigned char) ph.method; h.b_ftid = (unsigned char) ph.filter; h.b_cto8 = (unsigned char) ph.filter_cto; } unsigned char const *const uncLoader = fold_hdrlen + fold; unsigned char *const cprLoader = new unsigned char[sizeof(h) + h.sz_unc]; if (0 < szfold) { unsigned sz_cpr = 0; int r = upx_compress(uncLoader, h.sz_unc, sizeof(h) + cprLoader, &sz_cpr, NULL, ph.method, 10, NULL, NULL ); h.sz_cpr = sz_cpr; if (r != UPX_E_OK || h.sz_cpr >= h.sz_unc) throwInternalError("loader compression failed"); } memcpy(cprLoader, &h, sizeof(h)); // This adds the definition to the "library", to be used later. linker->addSection("FOLDEXEC", cprLoader, sizeof(h) + h.sz_cpr, 0); delete [] cprLoader; int const GAP = 128; // must match stub/l_mac_ppc.S int const NO_LAP = 64; // must match stub/src/*darwin*.S segcmdo.vmsize += h.sz_unc - h.sz_cpr + GAP + NO_LAP; addStubEntrySections(ft); defineSymbols(ft); relocateLoader(); } void PackMachPPC32::buildLoader(const Filter *ft) { buildMachLoader( stub_powerpc_darwin_macho_entry, sizeof(stub_powerpc_darwin_macho_entry), stub_powerpc_darwin_macho_fold, sizeof(stub_powerpc_darwin_macho_fold), ft ); } void PackMachI386::buildLoader(const Filter *ft) { buildMachLoader( stub_i386_darwin_macho_entry, sizeof(stub_i386_darwin_macho_entry), stub_i386_darwin_macho_fold, sizeof(stub_i386_darwin_macho_fold), ft ); } void PackMachARMEL::buildLoader(const Filter *ft) { buildMachLoader( stub_arm_darwin_macho_entry, sizeof(stub_arm_darwin_macho_entry), stub_arm_darwin_macho_fold, sizeof(stub_arm_darwin_macho_fold), ft ); } void PackDylibI386::buildLoader(const Filter *ft) { buildMachLoader( stub_i386_darwin_dylib_entry, sizeof(stub_i386_darwin_dylib_entry), 0, 0, ft ); } template void PackMachBase::patchLoader() { } template void PackMachBase::updateLoader(OutputFile *) {} template void PackMachBase::patchLoaderChecksum() { unsigned char *const ptr = getLoader(); l_info *const lp = &linfo; // checksum for loader; also some PackHeader info lp->l_checksum = 0; lp->l_magic = UPX_MAGIC_LE32; // LE32 always lp->l_lsize = (unsigned short) lsize; lp->l_version = (unsigned char) ph.version; lp->l_format = (unsigned char) ph.format; // INFO: lp->l_checksum is currently unused lp->l_checksum = upx_adler32(ptr, lsize); } template int __acc_cdecl_qsort PackMachBase::compare_segment_command(void const *const aa, void const *const bb) { Mach_segment_command const *const a = (Mach_segment_command const *)aa; Mach_segment_command const *const b = (Mach_segment_command const *)bb; unsigned const xa = a->cmd - Mach_segment_command::LC_SEGMENT; unsigned const xb = b->cmd - Mach_segment_command::LC_SEGMENT; if (xa < xb) return -1; // LC_SEGMENT first if (xa > xb) return 1; if (a->vmaddr < b->vmaddr) return -1; // ascending by .vmaddr if (a->vmaddr > b->vmaddr) return 1; return 0; } void PackMachPPC32::pack4(OutputFile *fo, Filter &ft) // append PackHeader { // offset of p_info in compressed file overlay_offset = sizeof(mhdro) + sizeof(segcmdo) + sizeof(threado) + sizeof(linfo); super::pack4(fo, ft); segcmdo.filesize = fo->getBytesWritten(); segcmdo.vmsize += segcmdo.filesize; fo->seek(sizeof(mhdro), SEEK_SET); fo->rewrite(&segcmdo, sizeof(segcmdo)); fo->rewrite(&threado, sizeof(threado)); fo->rewrite(&linfo, sizeof(linfo)); } void PackMachI386::pack4(OutputFile *fo, Filter &ft) // append PackHeader { // offset of p_info in compressed file overlay_offset = sizeof(mhdro) + sizeof(segcmdo) + sizeof(threado) + sizeof(linfo); super::pack4(fo, ft); segcmdo.filesize = fo->getBytesWritten(); segcmdo.vmsize += segcmdo.filesize; fo->seek(sizeof(mhdro), SEEK_SET); fo->rewrite(&segcmdo, sizeof(segcmdo)); fo->rewrite(&threado, sizeof(threado)); fo->rewrite(&linfo, sizeof(linfo)); } void PackMachARMEL::pack4(OutputFile *fo, Filter &ft) // append PackHeader { // offset of p_info in compressed file overlay_offset = sizeof(mhdro) + sizeof(segcmdo) + sizeof(threado) + sizeof(linfo); super::pack4(fo, ft); segcmdo.filesize = fo->getBytesWritten(); segcmdo.vmsize += segcmdo.filesize; fo->seek(sizeof(mhdro), SEEK_SET); fo->rewrite(&segcmdo, sizeof(segcmdo)); fo->rewrite(&threado, sizeof(threado)); fo->rewrite(&linfo, sizeof(linfo)); } #undef PAGE_MASK #undef PAGE_SIZE #define PAGE_MASK (~0u<<12) #define PAGE_SIZE -PAGE_MASK void PackDylibI386::pack4(OutputFile *fo, Filter &ft) // append PackHeader { rcmd.init_address = threado.state.eip; unsigned opos = sizeof(mhdro); fo->seek(opos, SEEK_SET); // Append each non-__TEXT segment, page aligned. int slide = 0; unsigned o_end_txt = 0; unsigned hdrpos = sizeof(mhdro); Mach_segment_command const *seg = rawmseg; Mach_segment_command const *const endseg = (Mach_segment_command const *)(mhdri.sizeofcmds + (char const *)seg); for ( ; seg < endseg; seg = (Mach_segment_command const *)( seg->cmdsize + (char const *)seg ) ) switch (~Mach_segment_command::LC_REQ_DYLD & seg->cmd) { default: // unknown if any file offset field must slide printf("Unrecognized Macho cmd offset=0x%x cmd=0x%x size=0x%x\n", (char *)seg - (char *)rawmseg, (unsigned)seg->cmd, (unsigned)seg->cmdsize); // fall through case Mach_segment_command::LC_THREAD: case Mach_segment_command::LC_UNIXTHREAD: case Mach_segment_command::LC_LOAD_DYLIB: case Mach_segment_command::LC_ID_DYLIB: case Mach_segment_command::LC_LOAD_DYLINKER: case Mach_segment_command::LC_SEGMENT_64: case Mach_segment_command::LC_ROUTINES_64: case Mach_segment_command::LC_UUID: case Mach_segment_command::LC_RPATH: case Mach_segment_command::LC_CODE_SIGNATURE: case Mach_segment_command::LC_REEXPORT_DYLIB: hdrpos += seg->cmdsize; break; // contain no file offset fields case Mach_segment_command::LC_ROUTINES: { Mach_routines_command cmd = *(Mach_routines_command const *)seg; cmd.reserved1 = cmd.init_address; cmd.init_address = threado.state.eip; fo->seek(hdrpos, SEEK_SET); fo->rewrite(&cmd, sizeof(cmd)); hdrpos += sizeof(cmd); } break; case Mach_segment_command::LC_SEGMENT: { // non-__TEXT might be observed and relocated by dyld before us. Mach_segment_command segcmdtmp = *seg; bool const is_text = 0==strncmp(&seg->segname[0], "__TEXT", 1+ 6); { if (is_text) { slide = 0; segcmdtmp.filesize = fo->getBytesWritten(); segcmdtmp.maxprot |= Mach_segment_command::VM_PROT_WRITE; segcmdtmp.initprot |= Mach_segment_command::VM_PROT_WRITE; o_end_txt = segcmdtmp.filesize + segcmdtmp.fileoff; } else { opos += ~PAGE_MASK & (0u - opos); // advance to PAGE_SIZE boundary slide = opos - segcmdtmp.fileoff; segcmdtmp.fileoff = opos; } fo->seek(hdrpos, SEEK_SET); fo->rewrite(&segcmdtmp, sizeof(segcmdtmp)); hdrpos += sizeof(segcmdtmp); // Update the sections. Mach_section_command const *secp = (Mach_section_command const *)(1+ seg); unsigned const nsects = segcmdtmp.nsects; Mach_section_command seccmdtmp; for (unsigned j = 0; j < nsects; ++secp, ++j) { seccmdtmp = *secp; seccmdtmp.offset += slide; if (seccmdtmp.nreloc) { seccmdtmp.reloff += slide; } fo->rewrite(&seccmdtmp, sizeof(seccmdtmp)); hdrpos += sizeof(seccmdtmp); } if (!is_text) { fo->seek(opos, SEEK_SET); fi->seek(seg->fileoff, SEEK_SET); unsigned const len = seg->filesize; char data[len]; fi->readx(data, len); fo->write(data, len); opos += len; } } } break; case Mach_segment_command::LC_SYMTAB: { Mach_symtab_command cmd = *(Mach_symtab_command const *)seg; if (o_end_txt <= cmd.symoff) { cmd.symoff += slide; } if (o_end_txt <= cmd.stroff) { cmd.stroff += slide; } fo->seek(hdrpos, SEEK_SET); fo->rewrite(&cmd, sizeof(cmd)); hdrpos += sizeof(cmd); } break; case Mach_segment_command::LC_DYSYMTAB: { Mach_dysymtab_command cmd = *(Mach_dysymtab_command const *)seg; if (o_end_txt <= cmd.tocoff) { cmd.tocoff += slide; } if (o_end_txt <= cmd.modtaboff) { cmd.modtaboff += slide; } if (o_end_txt <= cmd.extrefsymoff) { cmd.extrefsymoff += slide; } if (o_end_txt <= cmd.indirectsymoff) { cmd.indirectsymoff += slide; } if (o_end_txt <= cmd.extreloff) { cmd.extreloff += slide; } if (o_end_txt <= cmd.locreloff) { cmd.locreloff += slide; } fo->seek(hdrpos, SEEK_SET); fo->rewrite(&cmd, sizeof(cmd)); hdrpos += sizeof(cmd); } break; case Mach_segment_command::LC_SEGMENT_SPLIT_INFO: { Mach_segsplit_info_command cmd = *(Mach_segsplit_info_command const *)seg; if (o_end_txt <= cmd.dataoff) { cmd.dataoff += slide; } fo->seek(hdrpos, SEEK_SET); fo->rewrite(&cmd, sizeof(cmd)); hdrpos += sizeof(cmd); } break; } // end 'switch' fo->seek(opos, SEEK_SET); // BUG: "fo->seek(0, SEEK_END);" is broken // offset of p_info in compressed file overlay_offset = sizeof(mhdro) + mhdro.sizeofcmds + sizeof(linfo); PackMachBase::pack4(fo, ft); } void PackMachPPC32::pack3(OutputFile *fo, Filter &ft) // append loader { BE32 disp; unsigned const zero = 0; unsigned len = fo->getBytesWritten(); fo->write(&zero, 3& (0u-len)); len += (3& (0u-len)) + sizeof(disp); disp = 4+ len - sz_mach_headers; // 4: sizeof(instruction) fo->write(&disp, sizeof(disp)); threado.state.srr0 = len + segcmdo.vmaddr; /* entry address */ super::pack3(fo, ft); } void PackMachI386::pack3(OutputFile *fo, Filter &ft) // append loader { LE32 disp; unsigned const zero = 0; unsigned len = fo->getBytesWritten(); fo->write(&zero, 3& (0u-len)); len += (3& (0u-len)); disp = len - sz_mach_headers; fo->write(&disp, sizeof(disp)); threado.state.eip = len + sizeof(disp) + segcmdo.vmaddr; /* entry address */ super::pack3(fo, ft); } void PackMachARMEL::pack3(OutputFile *fo, Filter &ft) // append loader { LE32 disp; unsigned const zero = 0; unsigned len = fo->getBytesWritten(); fo->write(&zero, 3& (0u-len)); len += (3& (0u-len)); disp = len - sz_mach_headers; fo->write(&disp, sizeof(disp)); threado.state.pc = len + sizeof(disp) + segcmdo.vmaddr; /* entry address */ super::pack3(fo, ft); } void PackDylibI386::pack3(OutputFile *fo, Filter &ft) // append loader { LE32 disp; unsigned const zero = 0; unsigned len = fo->getBytesWritten(); fo->write(&zero, 3& (0u-len)); len += (3& (0u-len)) + 4*sizeof(disp); disp = prev_init_address; fo->write(&disp, sizeof(disp)); // user .init_address disp = sizeof(mhdro) + mhdro.sizeofcmds + sizeof(l_info) + sizeof(p_info); fo->write(&disp, sizeof(disp)); // src offset(compressed __TEXT) disp = len - disp - 3*sizeof(disp); fo->write(&disp, sizeof(disp)); // length(compressed __TEXT) unsigned const save_sz_mach_headers(sz_mach_headers); sz_mach_headers = 0; super::pack3(fo, ft); sz_mach_headers = save_sz_mach_headers; } // Determine length of gap between PT_LOAD phdri[k] and closest PT_LOAD // which follows in the file (or end-of-file). Optimize for common case // where the PT_LOAD are adjacent ascending by .p_offset. Assume no overlap. template unsigned PackMachBase::find_SEGMENT_gap( unsigned const k ) { if (Mach_segment_command::LC_SEGMENT!=msegcmd[k].cmd || 0==msegcmd[k].filesize ) { return 0; } unsigned const hi = msegcmd[k].fileoff + msegcmd[k].filesize; unsigned lo = ph.u_file_size; unsigned j = k; for (;;) { // circular search, optimize for adjacent ascending ++j; if (n_segment==j) { j = 0; } if (k==j) { break; } if (Mach_segment_command::LC_SEGMENT==msegcmd[j].cmd && 0!=msegcmd[j].filesize ) { unsigned const t = msegcmd[j].fileoff; if ((t - hi) < (lo - hi)) { lo = t; if (hi==lo) { break; } } } } return lo - hi; } template void PackMachBase::pack4(OutputFile *fo, Filter &ft) { PackUnix::pack4(fo, ft); // FIXME super() does not work? } template void PackMachBase::pack3(OutputFile *fo, Filter &ft) { PackUnix::pack3(fo, ft); // FIXME super() does not work? } template void PackMachBase::pack2(OutputFile *fo, Filter &ft) // append compressed body { Extent x; unsigned k; // count passes, set ptload vars uip->ui_total_passes = 0; for (k = 0; k < n_segment; ++k) { if (Mach_segment_command::LC_SEGMENT==msegcmd[k].cmd && 0!=msegcmd[k].filesize ) { uip->ui_total_passes++; if (my_filetype==Mach_header::MH_DYLIB) { break; } if (find_SEGMENT_gap(k)) { uip->ui_total_passes++; } } } // compress extents unsigned total_in = 0; unsigned total_out = 0; unsigned hdr_u_len = mhdri.sizeofcmds; uip->ui_pass = 0; ft.addvalue = 0; // Packer::compressWithFilters chooses a filter for us, and the stubs // can handle only one filter, and most filters are for executable // instructions. So filter only the largest executable segment. unsigned exe_filesize_max = 0; for (k = 0; k < n_segment; ++k) if (Mach_segment_command::LC_SEGMENT==msegcmd[k].cmd && 0!=(Mach_segment_command::VM_PROT_EXECUTE & msegcmd[k].initprot) && exe_filesize_max < msegcmd[k].filesize) { exe_filesize_max = msegcmd[k].filesize; } int nx = 0; for (k = 0; k < n_segment; ++k) if (Mach_segment_command::LC_SEGMENT==msegcmd[k].cmd && 0!=msegcmd[k].filesize ) { x.offset = msegcmd[k].fileoff; x.size = msegcmd[k].filesize; if (0 == nx) { // 1st LC_SEGMENT must cover Mach_header at 0==fileoffset unsigned const delta = mhdri.sizeofcmds; x.offset += delta; x.size -= delta; } bool const do_filter = (msegcmd[k].filesize==exe_filesize_max) && 0!=(Mach_segment_command::VM_PROT_EXECUTE & msegcmd[k].initprot); packExtent(x, total_in, total_out, (do_filter ? &ft : 0 ), fo, hdr_u_len ); if (do_filter) { exe_filesize_max = 0; } hdr_u_len = 0; ++nx; if (my_filetype==Mach_header::MH_DYLIB) { break; } } if (my_filetype!=Mach_header::MH_DYLIB) for (k = 0; k < n_segment; ++k) { x.size = find_SEGMENT_gap(k); if (x.size) { x.offset = msegcmd[k].fileoff +msegcmd[k].filesize; packExtent(x, total_in, total_out, 0, fo); } } if (my_filetype!=Mach_header::MH_DYLIB) if ((off_t)total_in != file_size) throwEOFException(); segcmdo.filesize = fo->getBytesWritten(); } void PackMachPPC32::pack1_setup_threado(OutputFile *const fo) { threado.cmd = Mach_segment_command::LC_UNIXTHREAD; threado.cmdsize = sizeof(threado); threado.flavor = my_thread_flavor; threado.count = my_thread_state_word_count; memset(&threado.state, 0, sizeof(threado.state)); fo->write(&threado, sizeof(threado)); } void PackMachI386::pack1_setup_threado(OutputFile *const fo) { threado.cmd = Mach_segment_command::LC_UNIXTHREAD; threado.cmdsize = sizeof(threado); threado.flavor = my_thread_flavor; threado.count = my_thread_state_word_count; memset(&threado.state, 0, sizeof(threado.state)); fo->write(&threado, sizeof(threado)); } void PackMachARMEL::pack1_setup_threado(OutputFile *const fo) { threado.cmd = Mach_segment_command::LC_UNIXTHREAD; threado.cmdsize = sizeof(threado); threado.flavor = my_thread_flavor; threado.count = my_thread_state_word_count; memset(&threado.state, 0, sizeof(threado.state)); fo->write(&threado, sizeof(threado)); } template void PackMachBase::pack1(OutputFile *const fo, Filter &/*ft*/) // generate executable header { mhdro = mhdri; if (my_filetype==Mach_header::MH_EXECUTE) { mhdro.ncmds = 2; mhdro.sizeofcmds = sizeof(segcmdo) + my_thread_command_size; mhdro.flags = Mach_header::MH_NOUNDEFS; } fo->write(&mhdro, sizeof(mhdro)); segcmdo.cmd = Mach_segment_command::LC_SEGMENT; segcmdo.cmdsize = sizeof(segcmdo); strncpy((char *)segcmdo.segname, "__TEXT", sizeof(segcmdo.segname)); if (my_filetype==Mach_header::MH_EXECUTE) { segcmdo.vmaddr = PAGE_MASK & (~PAGE_MASK + msegcmd[n_segment -1].vmsize + msegcmd[n_segment -1].vmaddr ); } if (my_filetype==Mach_header::MH_DYLIB) { segcmdo.vmaddr = 0; } segcmdo.vmsize = 0; // adjust later segcmdo.fileoff = 0; segcmdo.filesize = 0; // adjust later segcmdo.initprot = segcmdo.maxprot = Mach_segment_command::VM_PROT_READ | Mach_segment_command::VM_PROT_WRITE | Mach_segment_command::VM_PROT_EXECUTE; segcmdo.nsects = 0; segcmdo.flags = 0; if (my_filetype==Mach_header::MH_EXECUTE) { fo->write(&segcmdo, sizeof(segcmdo)); pack1_setup_threado(fo); } if (my_filetype==Mach_header::MH_DYLIB) { fo->write(rawmseg, mhdri.sizeofcmds); } sz_mach_headers = fo->getBytesWritten(); memset((char *)&linfo, 0, sizeof(linfo)); fo->write(&linfo, sizeof(linfo)); return; } template void PackMachBase::unpack(OutputFile *fo) { fi->seek(0, SEEK_SET); fi->readx(&mhdri, sizeof(mhdri)); rawmseg = (Mach_segment_command *)new char[(unsigned) mhdri.sizeofcmds]; fi->readx(rawmseg, mhdri.sizeofcmds); overlay_offset = sizeof(mhdri) + mhdri.sizeofcmds + sizeof(linfo); fi->seek(overlay_offset, SEEK_SET); p_info hbuf; fi->readx(&hbuf, sizeof(hbuf)); unsigned orig_file_size = get_te32(&hbuf.p_filesize); blocksize = get_te32(&hbuf.p_blocksize); if (file_size > (off_t)orig_file_size || blocksize > orig_file_size) throwCantUnpack("file header corrupted"); ibuf.alloc(blocksize + OVERHEAD); b_info bhdr; memset(&bhdr, 0, sizeof(bhdr)); fi->readx(&bhdr, sizeof(bhdr)); ph.u_len = get_te32(&bhdr.sz_unc); ph.c_len = get_te32(&bhdr.sz_cpr); ph.method = bhdr.b_method; ph.filter = bhdr.b_ftid; ph.filter_cto = bhdr.b_cto8; // Uncompress Macho headers fi->readx(ibuf, ph.c_len); Mach_header *const mhdr = (Mach_header *)new upx_byte[ph.u_len]; decompress(ibuf, (upx_byte *)mhdr, false); unsigned const ncmds = mhdr->ncmds; msegcmd = new Mach_segment_command[ncmds]; unsigned char *ptr = (unsigned char *)(1+mhdr); for (unsigned j= 0; j < ncmds; ++j) { msegcmd[j] = *(Mach_segment_command *)ptr; ptr += (unsigned) ((Mach_segment_command *)ptr)->cmdsize; } // Put LC_SEGMENT together at the beginning, ascending by .vmaddr. qsort(msegcmd, ncmds, sizeof(*msegcmd), compare_segment_command); n_segment = 0; for (unsigned j= 0; j < ncmds; ++j) { n_segment += (Mach_segment_command::LC_SEGMENT==msegcmd[j].cmd); } unsigned total_in = 0; unsigned total_out = 0; unsigned c_adler = upx_adler32(NULL, 0); unsigned u_adler = upx_adler32(NULL, 0); Mach_segment_command const *sc = (Mach_segment_command const *)(void *)(1+ mhdr); unsigned k; fi->seek(- (off_t)(sizeof(bhdr) + ph.c_len), SEEK_CUR); for ( k = 0; k < ncmds; (++k), (sc = (Mach_segment_command const *)(sc->cmdsize + (char const *)sc)) ) { if (Mach_segment_command::LC_SEGMENT==sc->cmd && 0!=sc->filesize ) { unsigned filesize = sc->filesize; unpackExtent(filesize, fo, total_in, total_out, c_adler, u_adler, false, sizeof(bhdr)); if (my_filetype==Mach_header::MH_DYLIB) { break; } } } if (my_filetype==Mach_header::MH_DYLIB) { Mach_segment_command const *rc = rawmseg; rc = (Mach_segment_command const *)(rc->cmdsize + (char const *)rc); sc = (Mach_segment_command const *)(sc->cmdsize + (char const *)sc); for ( k=1; k < ncmds; (++k), (sc = (Mach_segment_command const *)(sc->cmdsize + (char const *)sc)), (rc = (Mach_segment_command const *)(rc->cmdsize + (char const *)rc)) ) { if (Mach_segment_command::LC_SEGMENT==rc->cmd && 0!=rc->filesize ) { fi->seek(rc->fileoff, SEEK_SET); fo->seek(sc->fileoff, SEEK_SET); unsigned const len = rc->filesize; char data[len]; fi->readx(data, len); fo->write(data, len); } } } else for (unsigned j = 0; j < ncmds; ++j) { unsigned const size = find_SEGMENT_gap(j); if (size) { unsigned const where = msegcmd[k].fileoff +msegcmd[k].filesize; if (fo) fo->seek(where, SEEK_SET); unpackExtent(size, fo, total_in, total_out, c_adler, u_adler, false, sizeof(bhdr)); } } delete mhdr; } template bool PackMachBase::canPack() { fi->seek(0, SEEK_SET); fi->readx(&mhdri, sizeof(mhdri)); if (Mach_header::MH_MAGIC !=mhdri.magic || my_cputype !=mhdri.cputype || my_filetype !=mhdri.filetype ) return false; rawmseg = (Mach_segment_command *)new char[(unsigned) mhdri.sizeofcmds]; fi->readx(rawmseg, mhdri.sizeofcmds); msegcmd = new Mach_segment_command[(unsigned) mhdri.ncmds]; unsigned char const *ptr = (unsigned char const *)rawmseg; for (unsigned j= 0; j < mhdri.ncmds; ++j) { msegcmd[j] = *(Mach_segment_command const *)ptr; if (((Mach_segment_command const *)ptr)->cmd == Mach_segment_command::LC_ROUTINES) { o_routines_cmd = (char *)ptr - (char *)rawmseg; prev_init_address = ((Mach_routines_command const *)ptr)->init_address; } ptr += (unsigned) ((Mach_segment_command *)ptr)->cmdsize; } if (Mach_header::MH_DYLIB==my_filetype && 0==o_routines_cmd) { return false; } // Put LC_SEGMENT together at the beginning, ascending by .vmaddr. qsort(msegcmd, mhdri.ncmds, sizeof(*msegcmd), compare_segment_command); // Check that LC_SEGMENTs form one contiguous chunk of the file. for (unsigned j= 0; j < mhdri.ncmds; ++j) { if (Mach_segment_command::LC_SEGMENT==msegcmd[j].cmd) { if (~PAGE_MASK & (msegcmd[j].fileoff | msegcmd[j].vmaddr)) { return false; } if (0 < j) { unsigned const sz = PAGE_MASK & (~PAGE_MASK + msegcmd[j-1].filesize); if ((sz + msegcmd[j-1].fileoff)!=msegcmd[j].fileoff) { return false; } } ++n_segment; sz_segment = msegcmd[j].filesize + msegcmd[j].fileoff - msegcmd[0].fileoff; } } // info: currently the header is 36 (32+4) bytes before EOF unsigned char buf[256]; fi->seek(-(off_t)sizeof(buf), SEEK_END); fi->readx(buf, sizeof(buf)); checkAlreadyPacked(buf, sizeof(buf)); // set options opt->o_unix.blocksize = file_size; return 0 < n_segment; } template class PackMachBase; template class PackMachBase; PackMachFat::PackMachFat(InputFile *f) : super(f) { bele = &N_BELE_RTP::le_policy; // sham } PackMachFat::~PackMachFat() { } const int *PackMachFat::getCompressionMethods(int /*method*/, int /*level*/) const { static const int m_nrv2e[] = { M_NRV2E_LE32, M_END }; return m_nrv2e; // sham } const int *PackMachFat::getFilters() const { static const int filters[] = { 0x49, FT_END }; return filters; // sham } void PackMachFat::pack(OutputFile *fo) { unsigned const in_size = this->file_size; fo->write(&fat_head, sizeof(fat_head.fat) + fat_head.fat.nfat_arch * sizeof(fat_head.arch[0])); unsigned length = 0; for (unsigned j=0; j < fat_head.fat.nfat_arch; ++j) { unsigned base = fo->unset_extent(); // actual length base += ~(~0u<seek(base, SEEK_SET); fo->set_extent(base, ~0u); ph.u_file_size = fat_head.arch[j].size; fi->set_extent(fat_head.arch[j].offset, fat_head.arch[j].size); switch (fat_head.arch[j].cputype) { case PackMachFat::CPU_TYPE_I386: { PackMachI386 packer(fi); packer.initPackHeader(); packer.canPack(); packer.updatePackHeader(); packer.pack(fo); } break; case PackMachFat::CPU_TYPE_POWERPC: { PackMachPPC32 packer(fi); packer.initPackHeader(); packer.canPack(); packer.updatePackHeader(); packer.pack(fo); } break; } // switch cputype fat_head.arch[j].offset = base; length = fo->unset_extent(); fat_head.arch[j].size = length - base; } ph.u_file_size = in_size; fi->set_extent(0, in_size); fo->seek(0, SEEK_SET); fo->rewrite(&fat_head, sizeof(fat_head.fat) + fat_head.fat.nfat_arch * sizeof(fat_head.arch[0])); fo->set_extent(0, length); } void PackMachFat::unpack(OutputFile *fo) { fo->seek(0, SEEK_SET); fo->write(&fat_head, sizeof(fat_head.fat) + fat_head.fat.nfat_arch * sizeof(fat_head.arch[0])); unsigned length; for (unsigned j=0; j < fat_head.fat.nfat_arch; ++j) { unsigned base = fo->unset_extent(); // actual length base += ~(~0u<seek(base, SEEK_SET); fo->set_extent(base, ~0u); ph.u_file_size = fat_head.arch[j].size; fi->set_extent(fat_head.arch[j].offset, fat_head.arch[j].size); switch (fat_head.arch[j].cputype) { case PackMachFat::CPU_TYPE_I386: { PackMachI386 packer(fi); packer.initPackHeader(); packer.canUnpack(); packer.unpack(fo); } break; case PackMachFat::CPU_TYPE_POWERPC: { PackMachPPC32 packer(fi); packer.initPackHeader(); packer.canUnpack(); packer.unpack(fo); } break; } // switch cputype fat_head.arch[j].offset = base; length = fo->unset_extent(); fat_head.arch[j].size = length - base; } fo->unset_extent(); fo->seek(0, SEEK_SET); fo->rewrite(&fat_head, sizeof(fat_head.fat) + fat_head.fat.nfat_arch * sizeof(fat_head.arch[0])); } bool PackMachFat::canPack() { struct Mach_fat_arch *arch = &fat_head.arch[0]; fi->readx(&fat_head, sizeof(fat_head)); if (Mach_fat_header::FAT_MAGIC!=fat_head.fat.magic || N_FAT_ARCH < fat_head.fat.nfat_arch) { return false; } for (unsigned j=0; j < fat_head.fat.nfat_arch; ++j) { fi->set_extent(fat_head.arch[j].offset, fat_head.arch[j].size); switch (arch[j].cputype) { default: return false; case PackMachFat::CPU_TYPE_I386: { PackMachI386 packer(fi); if (!packer.canPack()) return false; } break; case PackMachFat::CPU_TYPE_POWERPC: { PackMachPPC32 packer(fi); if (!packer.canPack()) return false; } break; } // switch cputype } // info: currently the header is 36 (32+4) bytes before EOF unsigned char buf[256]; fi->seek(-(off_t)sizeof(buf), SEEK_END); fi->readx(buf, sizeof(buf)); checkAlreadyPacked(buf, sizeof(buf)); return true; } int PackMachFat::canUnpack() { struct Mach_fat_arch *arch = &fat_head.arch[0]; fi->readx(&fat_head, sizeof(fat_head)); if (Mach_fat_header::FAT_MAGIC!=fat_head.fat.magic || N_FAT_ARCH < fat_head.fat.nfat_arch) { return false; } for (unsigned j=0; j < fat_head.fat.nfat_arch; ++j) { fi->set_extent(fat_head.arch[j].offset, fat_head.arch[j].size); switch (arch[j].cputype) { default: return false; case PackMachFat::CPU_TYPE_I386: { PackMachI386 packer(fi); if (!packer.canUnpack()) return 0; ph.format = packer.getFormat(); // FIXME: copy entire PackHeader } break; case PackMachFat::CPU_TYPE_POWERPC: { PackMachPPC32 packer(fi); if (!packer.canUnpack()) return 0; ph.format = packer.getFormat(); // FIXME: copy entire PackHeader } break; } // switch cputype } return 1; } void PackMachFat::buildLoader(const Filter */*ft*/) { assert(false); } Linker* PackMachFat::newLinker() const { return new ElfLinkerX86; // sham } void PackMachFat::list() { assert(false); } /* vi:ts=4:et */