1
0
mirror of https://github.com/upx/upx synced 2025-09-28 19:06:07 +08:00
upx/src/stub/a_lx_elf64.c
John Reiser 75bba319de tuning, and prepare for large executables (>3MB compressed)
p_lx_elf.cpp stub/a_lx_elf64.c stub/amd_d_nrv2e.S
	stub/fold_elf64amd.S stub/l_lx_elf64amd.S

committer: jreiser <jreiser> 1131824655 +0000
2005-11-12 19:44:15 +00:00

360 lines
11 KiB
C

/* a_lx_elf64.c -- stub loader for Linux 64-bit ELF executable
This file is part of the UPX executable compressor.
Copyright (C) 1996-2004 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 1996-2004 Laszlo Molnar
Copyright (C) 2000-2005 John F. Reiser
All Rights Reserved.
UPX and the UCL library are free software; you can redistribute them
and/or modify them under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.
If not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Markus F.X.J. Oberhumer Laszlo Molnar
<mfx@users.sourceforge.net> <ml1050@users.sourceforge.net>
John F. Reiser
<jreiser@users.sourceforge.net>
*/
#include "linux.hh"
extern void exit(int);
/*************************************************************************
// configuration section
**************************************************************************/
// In order to make it much easier to move this code at runtime and execute
// it at an address different from it load address: there must be no
// static data, and no string constants.
#define MAX_ELF_HDR 1024 // Elf64_Ehdr + n*Elf64_Phdr must fit in this
/*************************************************************************
// "file" util
**************************************************************************/
typedef struct {
size_t size; // must be first to match size[0] uncompressed size
char *buf;
} Extent;
static void
xread(Extent *x, char *buf, size_t count)
{
char *p=x->buf, *q=buf;
size_t j;
if (x->size < count) {
exit(127);
}
for (j = count; 0!=j--; ++p, ++q) {
*q = *p;
}
x->buf += count;
x->size -= count;
}
/*************************************************************************
// util
**************************************************************************/
#if 1 //{ save space
#define ERR_LAB error: exit(127);
#define err_exit(a) goto error
#else //}{ save debugging time
#define ERR_LAB
static void
err_exit(int a)
{
(void)a; // debugging convenience
exit(127);
}
#endif //}
/*************************************************************************
// UPX & NRV stuff
**************************************************************************/
typedef void f_unfilter(
nrv_byte *, // also addvalue
nrv_uint,
unsigned cto8, // junk in high 24 bits
unsigned ftid
);
typedef int f_expand(
const nrv_byte *, nrv_uint,
nrv_byte *, nrv_uint *, unsigned );
static void
unpackExtent(
Extent *const xi, // input
Extent *const xo, // output
f_expand *const f_decompress,
f_unfilter *f_unf
)
{
while (xo->size) {
struct b_info h;
// Note: if h.sz_unc == h.sz_cpr then the block was not
// compressible and is stored in its uncompressed form.
// Read and check block sizes.
xread(xi, (char *)&h, sizeof(h));
if (h.sz_unc == 0) { // uncompressed size 0 -> EOF
if (h.sz_cpr != UPX_MAGIC_LE32) // h.sz_cpr must be h->magic
err_exit(2);
if (xi->size != 0) // all bytes must be written
err_exit(3);
break;
}
if (h.sz_cpr <= 0) {
err_exit(4);
ERR_LAB
}
if (h.sz_cpr > h.sz_unc
|| h.sz_unc > xo->size ) {
err_exit(5);
}
// Now we have:
// assert(h.sz_cpr <= h.sz_unc);
// assert(h.sz_unc > 0 && h.sz_unc <= blocksize);
// assert(h.sz_cpr > 0 && h.sz_cpr <= blocksize);
if (h.sz_cpr < h.sz_unc) { // Decompress block
nrv_uint out_len;
int const j = (*f_decompress)((unsigned char *)xi->buf, h.sz_cpr,
(unsigned char *)xo->buf, &out_len, h.b_method );
if (j != 0 || out_len != (nrv_uint)h.sz_unc)
err_exit(7);
// Skip Ehdr+Phdrs: separate 1st block, not filtered
if (h.b_ftid!=0 && f_unf // have filter
&& ((512 < out_len) // this block is longer than Ehdr+Phdrs
|| (xo->size==(unsigned)h.sz_unc) ) // block is last in Extent
) {
(*f_unf)((unsigned char *)xo->buf, out_len, h.b_cto8, h.b_ftid);
}
xi->buf += h.sz_cpr;
xi->size -= h.sz_cpr;
}
else { // copy literal block
xread(xi, xo->buf, h.sz_cpr);
}
xo->buf += h.sz_unc;
xo->size -= h.sz_unc;
}
}
#if 0 /*{*/
static void
upx_bzero(char *p, size_t len)
{
if (len) do {
*p++= 0;
} while (--len);
}
#define bzero upx_bzero
#endif /*}*/
static void
auxv_up(Elf64_auxv_t *av, unsigned const type, uint64_t const value)
{
if (av)
for (;; ++av) {
if (av->a_type==type || (av->a_type==AT_IGNORE && type!=AT_NULL)) {
av->a_type = type;
av->a_un.a_val = value;
return;
}
}
}
// The PF_* and PROT_* bits are {1,2,4}; the conversion table fits in 32 bits.
#define REP8(x) \
((x)|((x)<<4)|((x)<<8)|((x)<<12)|((x)<<16)|((x)<<20)|((x)<<24)|((x)<<28))
#define EXP8(y) \
((1&(y)) ? 0xf0f0f0f0 : (2&(y)) ? 0xff00ff00 : (4&(y)) ? 0xffff0000 : 0)
#define PF_TO_PROT(pf) \
((PROT_READ|PROT_WRITE|PROT_EXEC) & ( \
( (REP8(PROT_EXEC ) & EXP8(PF_X)) \
|(REP8(PROT_READ ) & EXP8(PF_R)) \
|(REP8(PROT_WRITE) & EXP8(PF_W)) \
) >> ((pf & (PF_R|PF_W|PF_X))<<2) ))
// Find convex hull of PT_LOAD (the minimal interval which covers all PT_LOAD),
// and mmap that much, to be sure that a kernel using exec-shield-randomize
// won't place the first piece in a way that leaves no room for the rest.
static unsigned long // returns relocation constant
xfind_pages(unsigned mflags, Elf64_Phdr const *phdr, int phnum,
char **const p_brk
)
{
size_t lo= ~0, hi= 0, szlo= 0;
char *addr;
mflags += MAP_PRIVATE | MAP_ANONYMOUS; // '+' can optimize better than '|'
for (; --phnum>=0; ++phdr) if (PT_LOAD==phdr->p_type) {
if (phdr->p_vaddr < lo) {
lo = phdr->p_vaddr;
szlo = phdr->p_filesz;
}
if (hi < (phdr->p_memsz + phdr->p_vaddr)) {
hi = phdr->p_memsz + phdr->p_vaddr;
}
}
szlo += ~PAGE_MASK & lo; // page fragment on lo edge
lo -= ~PAGE_MASK & lo; // round down to page boundary
hi = PAGE_MASK & (hi - lo - PAGE_MASK -1); // page length
szlo = PAGE_MASK & (szlo - PAGE_MASK -1); // page length
addr = mmap((void *)lo, hi, PROT_READ|PROT_WRITE|PROT_EXEC, mflags, 0, 0);
*p_brk = hi + addr; // the logical value of brk(0)
munmap(szlo + addr, hi - szlo); // desirable if PT_LOAD non-contiguous
return (unsigned long)addr - lo;
}
static Elf64_Addr // entry address
do_xmap(
Elf64_Ehdr const *const ehdr,
Extent *const xi,
int const fdi,
Elf64_auxv_t *const av,
f_expand *const f_decompress,
f_unfilter *const f_unf
)
{
Elf64_Phdr const *phdr = (Elf64_Phdr const *) (ehdr->e_phoff +
(char const *)ehdr);
char *v_brk;
unsigned long const reloc = xfind_pages(
((ET_DYN!=ehdr->e_type) ? MAP_FIXED : 0), phdr, ehdr->e_phnum, &v_brk);
int j;
for (j=0; j < ehdr->e_phnum; ++phdr, ++j)
if (xi && PT_PHDR==phdr->p_type) {
auxv_up(av, AT_PHDR, phdr->p_vaddr + reloc);
} else
if (PT_LOAD==phdr->p_type) {
unsigned const prot = PF_TO_PROT(phdr->p_flags);
Extent xo;
size_t mlen = xo.size = phdr->p_filesz;
char *addr = xo.buf = reloc + (char *)phdr->p_vaddr;
char *haddr = phdr->p_memsz + addr;
size_t frag = (long)addr &~ PAGE_MASK;
mlen += frag;
addr -= frag;
if (addr != mmap(addr, mlen, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_PRIVATE | (xi ? MAP_ANONYMOUS : 0),
fdi, phdr->p_offset - frag) ) {
err_exit(8);
}
if (xi) {
unpackExtent(xi, &xo, f_decompress, f_unf);
}
bzero(addr, frag); // fragment at lo end
frag = (-mlen) &~ PAGE_MASK; // distance to next page boundary
bzero(mlen+addr, frag); // fragment at hi end
if (xi && 0==phdr->p_offset) {
Elf64_Ehdr *const ehdr = (Elf64_Ehdr *)addr;
*(int *)&ehdr->e_ident[12] = 0x90c3050f; // syscall; ret; nop
}
if (0!=mprotect(addr, mlen, prot)) {
err_exit(10);
ERR_LAB
}
addr += mlen + frag; /* page boundary on hi end */
if (addr < haddr) { // need pages for .bss
if (addr != mmap(addr, haddr - addr, prot,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, 0, 0 ) ) {
err_exit(9);
}
}
}
if (xi) { // 1st call (main); also have (0!=av) here
if (ET_DYN!=ehdr->e_type) {
// Needed only if compressed shell script invokes compressed shell.
brk(v_brk);
}
}
return ehdr->e_entry + reloc;
}
/*************************************************************************
// upx_main - called by our entry code
//
// This function is optimized for size.
**************************************************************************/
void *
upx_main( // returns entry address
struct b_info const *const bi, // 1st block header
size_t const sz_compressed, // total length
Elf64_Ehdr *const ehdr, // temp char[sz_ehdr] for decompressing
Elf64_auxv_t *const av,
f_expand *const f_decompress,
f_unfilter *const f_unf
)
{
Elf64_Phdr const *phdr = (Elf64_Phdr const *)(1+ ehdr);
Elf64_Addr entry;
Extent xo, xi1, xi2;
xo.buf = (char *)ehdr;
xo.size = bi->sz_unc;
xi2.buf = (char *)bi; xi2.size = sz_compressed;
xi1.buf = (char *)bi; xi1.size = sz_compressed;
// ehdr = Uncompress Ehdr and Phdrs
unpackExtent(&xi2, &xo, f_decompress, 0); // never filtered?
// AT_PHDR.a_un.a_val is set again by do_xmap if PT_PHDR is present.
auxv_up(av, AT_PHDR , (unsigned long)(1+(Elf64_Ehdr *)phdr->p_vaddr));
auxv_up(av, AT_PHNUM , ehdr->e_phnum);
auxv_up(av, AT_ENTRY , (unsigned long)ehdr->e_entry);
//auxv_up(av, AT_PHENT , ehdr->e_phentsize); /* this can never change */
//auxv_up(av, AT_PAGESZ, PAGE_SIZE); /* ld-linux.so.2 does not need this */
entry = do_xmap(ehdr, &xi1, 0, av, f_decompress, f_unf); // "rewind"
{ // Map PT_INTERP program interpreter
int j;
for (j=0; j < ehdr->e_phnum; ++phdr, ++j) if (PT_INTERP==phdr->p_type) {
char const *const iname = (char const *)phdr->p_vaddr;
int const fdi = open(iname, O_RDONLY, 0);
if (0 > fdi) {
err_exit(18);
}
if (MAX_ELF_HDR!=read(fdi, (void *)ehdr, MAX_ELF_HDR)) {
ERR_LAB
err_exit(19);
}
entry = do_xmap(ehdr, 0, fdi, 0, 0, 0);
close(fdi);
}
}
return (void *)entry;
}
/*
vi:ts=4:et:nowrap
*/