1
0
mirror of https://github.com/upx/upx synced 2025-09-28 19:06:07 +08:00
upx/src/p_lx_elf.cpp
2010-04-10 13:57:25 +02:00

3012 lines
100 KiB
C++

/* p_lx_elf.cpp --
This file is part of the UPX executable compressor.
Copyright (C) 1996-2010 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 1996-2010 Laszlo Molnar
Copyright (C) 2000-2010 John F. Reiser
All Rights Reserved.
UPX and the UCL library are free software; you can redistribute them
and/or modify them under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.
If not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Markus F.X.J. Oberhumer Laszlo Molnar
<markus@oberhumer.com> <ml1050@users.sourceforge.net>
John F. Reiser
<jreiser@users.sourceforge.net>
*/
#include "conf.h"
#include "file.h"
#include "filter.h"
#include "linker.h"
#include "packer.h"
#include "p_elf.h"
#include "p_unix.h"
#include "p_lx_exc.h"
#include "p_lx_elf.h"
#include "ui.h"
#define PT_LOAD32 Elf32_Phdr::PT_LOAD
#define PT_LOAD64 Elf64_Phdr::PT_LOAD
static unsigned const EF_ARM_HASENTRY = 0x02;
static unsigned const EF_ARM_EABI_VER4 = 0x04000000;
static unsigned
umin(unsigned a, unsigned b)
{
return (a < b) ? a : b;
}
static acc_uint64l_t
umin64(acc_uint64l_t a, acc_uint64l_t b)
{
return (a < b) ? a : b;
}
int
PackLinuxElf32::checkEhdr(Elf32_Ehdr const *ehdr) const
{
const unsigned char * const buf = ehdr->e_ident;
if (0!=memcmp(buf, "\x7f\x45\x4c\x46", 4) // "\177ELF"
|| buf[Elf32_Ehdr::EI_CLASS]!=ei_class
|| buf[Elf32_Ehdr::EI_DATA] !=ei_data
) {
return -1;
}
if (!memcmp(buf+8, "FreeBSD", 7)) // branded
return 1;
int const type = get_te16(&ehdr->e_type);
if (type != Elf32_Ehdr::ET_EXEC && type != Elf32_Ehdr::ET_DYN)
return 2;
if (get_te16(&ehdr->e_machine) != e_machine)
return 3;
if (get_te32(&ehdr->e_version) != Elf32_Ehdr::EV_CURRENT)
return 4;
if (e_phnum < 1)
return 5;
if (get_te16(&ehdr->e_phentsize) != sizeof(Elf32_Phdr))
return 6;
if (type == Elf32_Ehdr::ET_EXEC) {
// check for Linux kernels
unsigned const entry = get_te32(&ehdr->e_entry);
if (entry == 0xC0100000) // uncompressed vmlinux
return 1000;
if (entry == 0x00001000) // compressed vmlinux
return 1001;
if (entry == 0x00100000) // compressed bvmlinux
return 1002;
}
// FIXME: add more checks for kernels
// FIXME: add special checks for other ELF i386 formats, like
// NetBSD, OpenBSD, Solaris, ....
// success
return 0;
}
int
PackLinuxElf64::checkEhdr(Elf64_Ehdr const *ehdr) const
{
const unsigned char * const buf = ehdr->e_ident;
unsigned osabi0 = buf[Elf32_Ehdr::EI_OSABI];
if (0==osabi0) {
osabi0 = opt->o_unix.osabi0;
}
if (0!=memcmp(buf, "\x7f\x45\x4c\x46", 4) // "\177ELF"
|| buf[Elf64_Ehdr::EI_CLASS]!=ei_class
|| buf[Elf64_Ehdr::EI_DATA] !=ei_data
|| osabi0!=ei_osabi
) {
return -1;
}
if (!memcmp(buf+8, "FreeBSD", 7)) // branded
return 1;
int const type = get_te16(&ehdr->e_type);
if (type != Elf64_Ehdr::ET_EXEC && type != Elf64_Ehdr::ET_DYN)
return 2;
if (get_te16(&ehdr->e_machine) != e_machine)
return 3;
if (get_te32(&ehdr->e_version) != Elf64_Ehdr::EV_CURRENT)
return 4;
if (e_phnum < 1)
return 5;
if (get_te16(&ehdr->e_phentsize) != sizeof(Elf64_Phdr))
return 6;
if (type == Elf64_Ehdr::ET_EXEC) {
// check for Linux kernels
acc_uint64l_t const entry = get_te64(&ehdr->e_entry);
if (entry == 0xC0100000) // uncompressed vmlinux
return 1000;
if (entry == 0x00001000) // compressed vmlinux
return 1001;
if (entry == 0x00100000) // compressed bvmlinux
return 1002;
}
// FIXME: add more checks for kernels
// FIXME: add special checks for other ELF i386 formats, like
// NetBSD, OpenBSD, Solaris, ....
// success
return 0;
}
PackLinuxElf::PackLinuxElf(InputFile *f)
: super(f), e_phnum(0), file_image(NULL), dynstr(NULL),
sz_phdrs(0), sz_elf_hdrs(0), sz_pack2(0),
lg2_page(12), page_size(1u<<lg2_page), xct_off(0), xct_va(0),
e_machine(0), ei_class(0), ei_data(0), ei_osabi(0), osabi_note(NULL)
{
}
PackLinuxElf::~PackLinuxElf()
{
delete[] file_image; file_image = NULL;
}
void PackLinuxElf::pack3(OutputFile *fo, Filter &ft)
{
unsigned disp;
unsigned const zero = 0;
unsigned len = fo->getBytesWritten();
fo->write(&zero, 3& -len); // ALIGN_UP 0 mod 4
len += (3& -len); // 0 mod 4
unsigned const t = 4 ^ (4 & len) ^ ((!!xct_off)<<2); // 0 or 4
fo->write(&zero, t);
len += t;
set_te32(&disp, len); // distance back to beginning (detect dynamic reloc)
fo->write(&disp, sizeof(disp));
len += sizeof(disp);
if (xct_off) {
set_te32(&disp, elf_unsigned_dynamic(Elf32_Dyn::DT_INIT) - load_va);
fo->write(&disp, sizeof(disp));
len += sizeof(disp);
set_te32(&disp, hatch_off);
fo->write(&disp, sizeof(disp));
len += sizeof(disp);
set_te32(&disp, xct_off);
fo->write(&disp, sizeof(disp));
len += sizeof(disp);
}
sz_pack2 = len; // 0 mod 8
super::pack3(fo, ft); // append the decompressor
}
void PackLinuxElf32::pack3(OutputFile *fo, Filter &ft)
{
super::pack3(fo, ft);
set_te32(&elfout.phdr[0].p_filesz, sz_pack2 + lsize);
set_te32(&elfout.phdr[0].p_memsz, sz_pack2 + lsize);
if (0!=xct_off) { // shared library
Elf32_Phdr *phdr = phdri;
unsigned off = sz_pack2;
unsigned off_init = 0; // where in file
unsigned va_init = sz_pack2; // virtual address
unsigned rel = 0;
unsigned old_dtinit = 0;
for (int j = e_phnum; --j>=0; ++phdr) {
unsigned const len = get_te32(&phdr->p_filesz);
unsigned const ioff = get_te32(&phdr->p_offset);
unsigned const type = get_te32(&phdr->p_type);
if (phdr->PT_INTERP==type) {
// Rotate to highest position, so it can be lopped
// by decrementing e_phnum.
memcpy((unsigned char *)ibuf, phdr, sizeof(*phdr));
memmove(phdr, 1+phdr, j * sizeof(*phdr)); // overlapping
memcpy(&phdr[j], (unsigned char *)ibuf, sizeof(*phdr));
--phdr;
set_te16(&ehdri.e_phnum, --e_phnum);
continue;
}
if (phdr->PT_LOAD32==type) {
if (xct_off < ioff) { // Slide up non-first PT_LOAD.
fi->seek(ioff, SEEK_SET);
fi->readx(ibuf, len);
off += ~page_mask & (ioff - off);
fo->seek(off, SEEK_SET);
fo->write(ibuf, len);
rel = off - ioff;
set_te32(&phdr->p_offset, rel + ioff);
}
else { // Change length of first PT_LOAD.
va_init += get_te32(&phdr->p_vaddr);
set_te32(&phdr->p_filesz, sz_pack2 + lsize);
set_te32(&phdr->p_memsz, sz_pack2 + lsize);
}
continue; // all done with this PT_LOAD
}
// Compute new offset of &DT_INIT.d_val.
if (phdr->PT_DYNAMIC==type) {
off_init = rel + ioff;
fi->seek(ioff, SEEK_SET);
fi->read(ibuf, len);
Elf32_Dyn *dyn = (Elf32_Dyn *)(void *)ibuf;
for (int j2 = len; j2 > 0; ++dyn, j2 -= sizeof(*dyn)) {
if (dyn->DT_INIT==get_te32(&dyn->d_tag)) {
old_dtinit = dyn->d_val;
unsigned const t = (unsigned char *)&dyn->d_val -
(unsigned char *)ibuf;
off_init += t;
break;
}
}
// fall through to relocate .p_offset
}
if (xct_off < ioff)
set_te32(&phdr->p_offset, rel + ioff);
}
if (off_init) { // change DT_INIT.d_val
fo->seek(off_init, SEEK_SET);
va_init |= (Elf32_Ehdr::EM_ARM==e_machine);
unsigned word; set_te32(&word, va_init);
fo->rewrite(&word, sizeof(word));
fo->seek(0, SEEK_END);
}
ehdri.e_shnum = 0;
ehdri.e_shoff = old_dtinit; // easy to find for unpacking
ehdri.e_shentsize = 0;
ehdri.e_shstrndx = 0;
}
}
void PackLinuxElf64::pack3(OutputFile *fo, Filter &ft)
{
super::pack3(fo, ft);
set_te64(&elfout.phdr[0].p_filesz, sz_pack2 + lsize);
set_te64(&elfout.phdr[0].p_memsz, sz_pack2 + lsize);
if (0!=xct_off) { // shared library
Elf64_Phdr *phdr = phdri;
unsigned off = sz_pack2;
unsigned off_init = 0; // where in file
acc_uint64l_t va_init = sz_pack2; // virtual address
acc_uint64l_t rel = 0;
acc_uint64l_t old_dtinit = 0;
for (int j = e_phnum; --j>=0; ++phdr) {
acc_uint64l_t const len = get_te64(&phdr->p_filesz);
acc_uint64l_t const ioff = get_te64(&phdr->p_offset);
acc_uint64l_t align= get_te64(&phdr->p_align);
unsigned const type = get_te32(&phdr->p_type);
if (phdr->PT_INTERP==type) {
// Rotate to highest position, so it can be lopped
// by decrementing e_phnum.
memcpy((unsigned char *)ibuf, phdr, sizeof(*phdr));
memcpy(phdr, 1+phdr, j * sizeof(*phdr));
memcpy(&phdr[j], (unsigned char *)ibuf, sizeof(*phdr));
--phdr;
set_te16(&ehdri.e_phnum, --e_phnum);
continue;
}
if (phdr->PT_LOAD==type) {
if (xct_off < ioff) { // Slide up non-first PT_LOAD.
// AMD64 chip supports page sizes of 4KiB, 2MiB, and 1GiB;
// the operating system chooses one. .p_align typically
// is a forward-looking 2MiB. In 2009 Linux chooses 4KiB.
// We choose 4KiB to waste less space. If Linux chooses
// 2MiB later, then our output will not run.
if ((1u<<12) < align) {
align = 1u<<12;
set_te64(&phdr->p_align, align);
}
off += (align-1) & (ioff - off);
fi->seek(ioff, SEEK_SET); fi->readx(ibuf, len);
fo->seek( off, SEEK_SET); fo->write(ibuf, len);
rel = off - ioff;
set_te64(&phdr->p_offset, rel + ioff);
}
else { // Change length of first PT_LOAD.
va_init += get_te64(&phdr->p_vaddr);
set_te64(&phdr->p_filesz, sz_pack2 + lsize);
set_te64(&phdr->p_memsz, sz_pack2 + lsize);
}
continue; // all done with this PT_LOAD
}
// Compute new offset of &DT_INIT.d_val.
if (phdr->PT_DYNAMIC==type) {
off_init = rel + ioff;
fi->seek(ioff, SEEK_SET);
fi->read(ibuf, len);
Elf64_Dyn *dyn = (Elf64_Dyn *)(void *)ibuf;
for (int j2 = len; j2 > 0; ++dyn, j2 -= sizeof(*dyn)) {
if (dyn->DT_INIT==get_te64(&dyn->d_tag)) {
old_dtinit = dyn->d_val;
unsigned const t = (unsigned char *)&dyn->d_val -
(unsigned char *)ibuf;
off_init += t;
break;
}
}
// fall through to relocate .p_offset
}
if (xct_off < ioff)
set_te64(&phdr->p_offset, rel + ioff);
}
if (off_init) { // change DT_INIT.d_val
fo->seek(off_init, SEEK_SET);
acc_uint64l_t word; set_te64(&word, va_init);
fo->rewrite(&word, sizeof(word));
fo->seek(0, SEEK_END);
}
ehdri.e_shnum = 0;
ehdri.e_shoff = old_dtinit; // easy to find for unpacking
//ehdri.e_shentsize = 0;
//ehdri.e_shstrndx = 0;
}
}
void
PackLinuxElf::addStubEntrySections(Filter const *)
{
addLoader("ELFMAINX", NULL);
if (hasLoaderSection("ELFMAINXu")) {
addLoader((opt->o_unix.unmap_all_pages ? "LUNMP000" : "LUNMP001"), "ELFMAINXu", NULL);
}
//addLoader(getDecompressorSections(), NULL);
addLoader(
( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL"
: M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL"
: M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL"
: M_IS_LZMA(ph.method) ? "LZMA_ELF00,+80C,LZMA_DEC20,LZMA_DEC30"
: NULL), NULL);
if (hasLoaderSection("CFLUSH"))
addLoader("CFLUSH");
addLoader("ELFMAINY,IDENTSTR,+40,ELFMAINZ", NULL);
if (hasLoaderSection("ELFMAINZu")) {
addLoader((opt->o_unix.unmap_all_pages ? "LUNMP000" : "LUNMP001"), "ELFMAINZu", NULL);
}
addLoader("FOLDEXEC", NULL);
}
void PackLinuxElf::defineSymbols(Filter const *)
{
// empty
}
PackLinuxElf32::PackLinuxElf32(InputFile *f)
: super(f), phdri(NULL), shdri(NULL), page_mask(~0u<<lg2_page),
dynseg(NULL), hashtab(NULL), gashtab(NULL), dynsym(NULL),
shstrtab(NULL), n_elf_shnum(0),
sec_strndx(NULL), sec_dynsym(NULL), sec_dynstr(NULL)
{
memset(&ehdri, 0, sizeof(ehdri));
if (f) {
f->seek(0, SEEK_SET);
f->readx(&ehdri, sizeof(ehdri));
}
}
PackLinuxElf32::~PackLinuxElf32()
{
delete[] phdri; phdri = NULL;
}
PackLinuxElf64::PackLinuxElf64(InputFile *f)
: super(f), phdri(NULL), shdri(NULL), page_mask(~0ull<<lg2_page),
dynseg(NULL), hashtab(NULL), gashtab(NULL), dynsym(NULL),
shstrtab(NULL), n_elf_shnum(0),
sec_strndx(NULL), sec_dynsym(NULL), sec_dynstr(NULL)
{
memset(&ehdri, 0, sizeof(ehdri));
if (f) {
f->seek(0, SEEK_SET);
f->readx(&ehdri, sizeof(ehdri));
}
}
PackLinuxElf64::~PackLinuxElf64()
{
delete[] phdri; phdri = NULL;
}
Linker* PackLinuxElf64amd::newLinker() const
{
return new ElfLinkerAMD64;
}
int const *
PackLinuxElf::getCompressionMethods(int method, int level) const
{
// No real dependency on LE32.
return Packer::getDefaultCompressionMethods_le32(method, level);
}
int const *
PackLinuxElf32armLe::getCompressionMethods(int method, int level) const
{
return Packer::getDefaultCompressionMethods_8(method, level);
}
int const *
PackLinuxElf32armBe::getCompressionMethods(int method, int level) const
{
return Packer::getDefaultCompressionMethods_8(method, level);
}
int const *
PackLinuxElf32ppc::getFilters() const
{
static const int filters[] = {
0xd0,
FT_END };
return filters;
}
int const *
PackLinuxElf64amd::getFilters() const
{
static const int filters[] = {
0x49,
FT_END };
return filters;
}
void PackLinuxElf32::patchLoader()
{
}
void PackLinuxElf64::patchLoader()
{
}
void PackLinuxElf32::ARM_updateLoader(OutputFile *fo)
{
set_te32(&elfout.ehdr.e_entry, fo->getBytesWritten() +
linker->getSymbolOffset("_start") +
get_te32(&elfout.phdr[0].p_vaddr));
}
void PackLinuxElf32armLe::updateLoader(OutputFile *fo)
{
ARM_updateLoader(fo);
}
void PackLinuxElf32armBe::updateLoader(OutputFile *fo)
{
ARM_updateLoader(fo);
}
void PackLinuxElf32mipsel::updateLoader(OutputFile *fo)
{
ARM_updateLoader(fo); // not ARM specific; (no 32-bit immediates)
}
void PackLinuxElf32mipseb::updateLoader(OutputFile *fo)
{
ARM_updateLoader(fo); // not ARM specific; (no 32-bit immediates)
}
void PackLinuxElf32::updateLoader(OutputFile *fo)
{
set_te32(&elfout.ehdr.e_entry, fo->getBytesWritten() +
get_te32(&elfout.phdr[0].p_vaddr));
}
void PackLinuxElf64::updateLoader(OutputFile *fo)
{
set_te64(&elfout.ehdr.e_entry, fo->getBytesWritten() +
get_te64(&elfout.phdr[0].p_vaddr));
}
PackLinuxElf32ppc::PackLinuxElf32ppc(InputFile *f)
: super(f)
{
e_machine = Elf32_Ehdr::EM_PPC;
ei_class = Elf32_Ehdr::ELFCLASS32;
ei_data = Elf32_Ehdr::ELFDATA2MSB;
ei_osabi = Elf32_Ehdr::ELFOSABI_LINUX;
}
PackLinuxElf32ppc::~PackLinuxElf32ppc()
{
}
Linker* PackLinuxElf32ppc::newLinker() const
{
return new ElfLinkerPpc32;
}
PackLinuxElf64amd::PackLinuxElf64amd(InputFile *f)
: super(f)
{
e_machine = Elf64_Ehdr::EM_X86_64;
ei_class = Elf64_Ehdr::ELFCLASS64;
ei_data = Elf64_Ehdr::ELFDATA2LSB;
ei_osabi = Elf32_Ehdr::ELFOSABI_LINUX;
}
PackLinuxElf64amd::~PackLinuxElf64amd()
{
}
static unsigned
umax(unsigned a, unsigned b)
{
if (a <= b) {
return b;
}
return a;
}
void PackLinuxElf32x86::addStubEntrySections(Filter const *ft)
{
int const n_mru = ft->n_mru; // FIXME: belongs to filter? packerf?
// Rely on "+80CXXXX" [etc] in getDecompressorSections() packer_c.cpp */
// // Here is a quick summary of the format of the output file:
// linker->setLoaderAlignOffset(
// // Elf32_Edhr
// sizeof(elfout.ehdr) +
// // Elf32_Phdr: 1 for exec86, 2 for sh86, 3 for elf86
// (get_te16(&elfout.ehdr.e_phentsize) * get_te16(&elfout.ehdr.e_phnum)) +
// // checksum UPX! lsize version format
// sizeof(l_info) +
// // PT_DYNAMIC with DT_NEEDED "forwarded" from original file
// ((get_te16(&elfout.ehdr.e_phnum)==3)
// ? (unsigned) get_te32(&elfout.phdr[2].p_memsz)
// : 0) +
// // p_progid, p_filesize, p_blocksize
// sizeof(p_info) +
// // compressed data
// b_len + ph.c_len );
// entry to stub
addLoader("LEXEC000", NULL);
if (ft->id) {
{ // decompr, unfilter are separate
addLoader("LXUNF000", NULL);
addLoader("LXUNF002", NULL);
if (0x80==(ft->id & 0xF0)) {
if (256==n_mru) {
addLoader("MRUBYTE0", NULL);
}
else if (n_mru) {
addLoader("LXMRU005", NULL);
}
if (n_mru) {
addLoader("LXMRU006", NULL);
}
else {
addLoader("LXMRU007", NULL);
}
}
else if (0x40==(ft->id & 0xF0)) {
addLoader("LXUNF008", NULL);
}
addLoader("LXUNF010", NULL);
}
if (n_mru) {
addLoader("LEXEC009", NULL);
}
}
addLoader("LEXEC010", NULL);
addLoader(getDecompressorSections(), NULL);
addLoader("LEXEC015", NULL);
if (ft->id) {
{ // decompr, unfilter are separate
if (0x80!=(ft->id & 0xF0)) {
addLoader("LXUNF042", NULL);
}
}
addFilter32(ft->id);
{ // decompr, unfilter are separate
if (0x80==(ft->id & 0xF0)) {
if (0==n_mru) {
addLoader("LXMRU058", NULL);
}
}
addLoader("LXUNF035", NULL);
}
}
else {
addLoader("LEXEC017", NULL);
}
addLoader("IDENTSTR", NULL);
addLoader("LEXEC020", (opt->o_unix.unmap_all_pages ? "LUNMP000" : "LUNMP001"), "LEXEC025", NULL);
addLoader("FOLDEXEC", NULL);
}
void PackLinuxElf32x86::defineSymbols(Filter const *const ft)
{
if (0x80==(ft->id & 0xF0)) {
int const mru = ft->n_mru ? 1+ ft->n_mru : 0;
if (mru && mru!=256) {
unsigned const is_pwr2 = (0==((mru -1) & mru));
linker->defineSymbol("NMRU", mru - is_pwr2);
}
}
}
void
PackLinuxElf32::buildLinuxLoader(
upx_byte const *const proto,
unsigned const szproto,
upx_byte const *const fold,
unsigned const szfold,
Filter const *ft
)
{
initLoader(proto, szproto);
if (0 < szfold) {
struct b_info h; memset(&h, 0, sizeof(h));
unsigned fold_hdrlen = 0;
cprElfHdr1 const *const hf = (cprElfHdr1 const *)fold;
fold_hdrlen = umax(0x80, sizeof(hf->ehdr) +
get_te16(&hf->ehdr.e_phentsize) * get_te16(&hf->ehdr.e_phnum) +
sizeof(l_info) );
h.sz_unc = ((szfold < fold_hdrlen) ? 0 : (szfold - fold_hdrlen));
h.b_method = (unsigned char) ph.method;
h.b_ftid = (unsigned char) ph.filter;
h.b_cto8 = (unsigned char) ph.filter_cto;
unsigned char const *const uncLoader = fold_hdrlen + fold;
h.sz_cpr = MemBuffer::getSizeForCompression(h.sz_unc + (0==h.sz_unc));
unsigned char *const cprLoader = new unsigned char[sizeof(h) + h.sz_cpr];
int r = upx_compress(uncLoader, h.sz_unc, sizeof(h) + cprLoader, &h.sz_cpr,
NULL, ph.method, 10, NULL, NULL );
if (r != UPX_E_OK || h.sz_cpr >= h.sz_unc)
throwInternalError("loader compression failed");
#if 0 //{ debugging only
if (M_IS_LZMA(ph.method)) {
ucl_uint tmp_len = h.sz_unc; // LZMA uses this as EOF
unsigned char *tmp = new unsigned char[tmp_len];
memset(tmp, 0, tmp_len);
r = upx_decompress(sizeof(h) + cprLoader, h.sz_cpr, tmp, &tmp_len, h.b_method, NULL);
if (r == UPX_E_OUT_OF_MEMORY)
throwOutOfMemoryException();
printf("\n%d %d: %d %d %d\n", h.b_method, r, h.sz_cpr, h.sz_unc, tmp_len);
for (unsigned j=0; j < h.sz_unc; ++j) if (tmp[j]!=uncLoader[j]) {
printf("%d: %x %x\n", j, tmp[j], uncLoader[j]);
}
delete[] tmp;
}
#endif //}
unsigned const sz_cpr = h.sz_cpr;
set_te32(&h.sz_cpr, h.sz_cpr);
set_te32(&h.sz_unc, h.sz_unc);
memcpy(cprLoader, &h, sizeof(h));
// This adds the definition to the "library", to be used later.
linker->addSection("FOLDEXEC", cprLoader, sizeof(h) + sz_cpr, 0);
delete [] cprLoader;
}
else {
linker->addSection("FOLDEXEC", "", 0, 0);
}
addStubEntrySections(ft);
if (0==xct_off)
defineSymbols(ft); // main program only, not for shared lib
relocateLoader();
}
void
PackLinuxElf64::buildLinuxLoader(
upx_byte const *const proto,
unsigned const szproto,
upx_byte const *const fold,
unsigned const szfold,
Filter const *ft
)
{
initLoader(proto, szproto);
if (0 < szfold) {
struct b_info h; memset(&h, 0, sizeof(h));
unsigned fold_hdrlen = 0;
cprElfHdr1 const *const hf = (cprElfHdr1 const *)fold;
fold_hdrlen = umax(0x80, sizeof(hf->ehdr) +
get_te16(&hf->ehdr.e_phentsize) * get_te16(&hf->ehdr.e_phnum) +
sizeof(l_info) );
h.sz_unc = ((szfold < fold_hdrlen) ? 0 : (szfold - fold_hdrlen));
h.b_method = (unsigned char) ph.method;
h.b_ftid = (unsigned char) ph.filter;
h.b_cto8 = (unsigned char) ph.filter_cto;
unsigned char const *const uncLoader = fold_hdrlen + fold;
h.sz_cpr = MemBuffer::getSizeForCompression(h.sz_unc + (0==h.sz_unc));
unsigned char *const cprLoader = new unsigned char[sizeof(h) + h.sz_cpr];
int r = upx_compress(uncLoader, h.sz_unc, sizeof(h) + cprLoader, &h.sz_cpr,
NULL, ph.method, 10, NULL, NULL );
if (r != UPX_E_OK || h.sz_cpr >= h.sz_unc)
throwInternalError("loader compression failed");
unsigned const sz_cpr = h.sz_cpr;
set_te32(&h.sz_cpr, h.sz_cpr);
set_te32(&h.sz_unc, h.sz_unc);
memcpy(cprLoader, &h, sizeof(h));
// This adds the definition to the "library", to be used later.
linker->addSection("FOLDEXEC", cprLoader, sizeof(h) + sz_cpr, 0);
delete [] cprLoader;
}
else {
linker->addSection("FOLDEXEC", "", 0, 0);
}
addStubEntrySections(ft);
if (0==xct_off)
defineSymbols(ft); // main program only, not for shared lib
relocateLoader();
}
void
PackLinuxElf64amd::defineSymbols(Filter const *)
{
unsigned const hlen = sz_elf_hdrs + sizeof(l_info) + sizeof(p_info);
// We want to know if compressed data, plus stub, plus a couple pages,
// will fit below the uncompressed program in memory. But we don't
// know the final total compressed size yet, so use the uncompressed
// size (total over all PT_LOAD64) as an upper bound.
unsigned len = 0;
acc_uint64l_t lo_va_user = ~0ull; // infinity
for (int j= e_phnum; --j>=0; ) {
if (PT_LOAD64 == get_te32(&phdri[j].p_type)) {
len += (unsigned)get_te64(&phdri[j].p_filesz);
acc_uint64l_t const va = get_te64(&phdri[j].p_vaddr);
if (va < lo_va_user) {
lo_va_user = va;
}
}
}
lsize = /*getLoaderSize()*/ 64 * 1024; // XXX: upper bound; avoid circularity
acc_uint64l_t lo_va_stub = get_te64(&elfout.phdr[0].p_vaddr);
acc_uint64l_t adrc;
acc_uint64l_t adrm;
acc_uint64l_t adru;
acc_uint64l_t adrx;
unsigned cntc;
unsigned lenm;
unsigned lenu;
len += (7&-lsize) + lsize;
bool const is_big = (lo_va_user < (lo_va_stub + len + 2*page_size));
if (is_big && ehdri.ET_EXEC==get_te16(&ehdri.e_type)) {
set_te64( &elfout.ehdr.e_entry,
get_te64(&elfout.ehdr.e_entry) + lo_va_user - lo_va_stub);
set_te64(&elfout.phdr[0].p_vaddr, lo_va_user);
set_te64(&elfout.phdr[0].p_paddr, lo_va_user);
lo_va_stub = lo_va_user;
adrc = lo_va_stub;
adrm = getbrk(phdri, e_phnum);
adru = page_mask & (~page_mask + adrm); // round up to page boundary
adrx = adru + hlen;
lenm = page_size + len;
lenu = page_size + len;
cntc = len >> 3; // over-estimate; corrected at runtime
}
else {
adrm = lo_va_stub + len;
adrc = adrm;
adru = lo_va_stub;
adrx = lo_va_stub + hlen;
lenm = page_size;
lenu = page_size + len;
cntc = 0;
}
adrm = page_mask & (~page_mask + adrm); // round up to page boundary
adrc = page_mask & (~page_mask + adrc); // round up to page boundary
//linker->defineSymbol("ADRX", adrx); // compressed input for eXpansion
// For actual moving, we need the true count, which depends on sz_pack2
// and is not yet known. So the runtime stub detects "no move"
// if adrm==adrc, and otherwise uses actual sz_pack2 to compute cntc.
//linker->defineSymbol("CNTC", cntc); // count for copy
linker->defineSymbol("LENU", lenu); // len for unmap
linker->defineSymbol("ADRC", adrc); // addr for copy
//linker->defineSymbol("ADRU", adru); // addr for unmap
#define EI_NIDENT 16 /* <elf.h> */
linker->defineSymbol("JMPU", EI_NIDENT -4 + lo_va_user); // unmap trampoline
#undef EI_NIDENT
linker->defineSymbol("LENM", lenm); // len for map
linker->defineSymbol("ADRM", adrm); // addr for map
//linker->dumpSymbols(); // debug
}
static const
#include "stub/i386-linux.elf-entry.h"
static const
#include "stub/i386-linux.elf-fold.h"
static const
#include "stub/i386-linux.shlib-init.h"
void
PackLinuxElf32x86::buildLoader(const Filter *ft)
{
if (0!=xct_off) { // shared library
buildLinuxLoader(
stub_i386_linux_shlib_init, sizeof(stub_i386_linux_shlib_init),
NULL, 0, ft );
return;
}
unsigned char tmp[sizeof(stub_i386_linux_elf_fold)];
memcpy(tmp, stub_i386_linux_elf_fold, sizeof(stub_i386_linux_elf_fold));
checkPatch(NULL, 0, 0, 0); // reset
if (opt->o_unix.is_ptinterp) {
unsigned j;
for (j = 0; j < sizeof(stub_i386_linux_elf_fold)-1; ++j) {
if (0x60==tmp[ j]
&& 0x47==tmp[1+j] ) {
/* put INC EDI before PUSHA: inhibits auxv_up for PT_INTERP */
tmp[ j] = 0x47;
tmp[1+j] = 0x60;
break;
}
}
}
buildLinuxLoader(
stub_i386_linux_elf_entry, sizeof(stub_i386_linux_elf_entry),
tmp, sizeof(stub_i386_linux_elf_fold), ft );
}
static const
#include "stub/i386-bsd.elf-entry.h"
static const
#include "stub/i386-bsd.elf-fold.h"
void
PackBSDElf32x86::buildLoader(const Filter *ft)
{
unsigned char tmp[sizeof(stub_i386_bsd_elf_fold)];
memcpy(tmp, stub_i386_bsd_elf_fold, sizeof(stub_i386_bsd_elf_fold));
checkPatch(NULL, 0, 0, 0); // reset
if (opt->o_unix.is_ptinterp) {
unsigned j;
for (j = 0; j < sizeof(stub_i386_bsd_elf_fold)-1; ++j) {
if (0x60==tmp[ j]
&& 0x47==tmp[1+j] ) {
/* put INC EDI before PUSHA: inhibits auxv_up for PT_INTERP */
tmp[ j] = 0x47;
tmp[1+j] = 0x60;
break;
}
}
}
buildLinuxLoader(
stub_i386_bsd_elf_entry, sizeof(stub_i386_bsd_elf_entry),
tmp, sizeof(stub_i386_bsd_elf_fold), ft);
}
#if 0 //{ re-use for OpenBSD, too
static const
#include "stub/i386-bsd.elf-entry.h"
#endif //}
static const
#include "stub/i386-openbsd.elf-fold.h"
void
PackOpenBSDElf32x86::buildLoader(const Filter *ft)
{
unsigned char tmp[sizeof(stub_i386_openbsd_elf_fold)];
memcpy(tmp, stub_i386_openbsd_elf_fold, sizeof(stub_i386_openbsd_elf_fold));
checkPatch(NULL, 0, 0, 0); // reset
if (opt->o_unix.is_ptinterp) {
unsigned j;
for (j = 0; j < sizeof(stub_i386_openbsd_elf_fold)-1; ++j) {
if (0x60==tmp[ j]
&& 0x47==tmp[1+j] ) {
/* put INC EDI before PUSHA: inhibits auxv_up for PT_INTERP */
tmp[ j] = 0x47;
tmp[1+j] = 0x60;
break;
}
}
}
buildLinuxLoader(
stub_i386_bsd_elf_entry, sizeof(stub_i386_bsd_elf_entry),
tmp, sizeof(stub_i386_openbsd_elf_fold), ft);
}
static const
#include "stub/armel-eabi-linux.elf-entry.h"
static const
#include "stub/armel-eabi-linux.elf-fold.h"
static const
#include "stub/thumb-eabi-linux.shlib-init.h"
static const
#include "stub/arm-linux.elf-entry.h"
static const
#include "stub/arm-linux.elf-fold.h"
static const
#include "stub/arm-linux.shlib-init.h"
static const
#include "stub/armeb-linux.elf-entry.h"
static const
#include "stub/armeb-linux.elf-fold.h"
#include "mem.h"
void
PackLinuxElf32armBe::buildLoader(Filter const *ft)
{
buildLinuxLoader(
stub_armeb_linux_elf_entry, sizeof(stub_armeb_linux_elf_entry),
stub_armeb_linux_elf_fold, sizeof(stub_armeb_linux_elf_fold), ft);
}
void
PackLinuxElf32armLe::buildLoader(Filter const *ft)
{
if (Elf32_Ehdr::ELFOSABI_LINUX==ei_osabi) {
if (0!=xct_off) { // shared library
buildLinuxLoader(
stub_thumb_eabi_linux_shlib_init, sizeof(stub_thumb_eabi_linux_shlib_init),
NULL, 0, ft );
return;
}
buildLinuxLoader(
stub_armel_eabi_linux_elf_entry, sizeof(stub_armel_eabi_linux_elf_entry),
stub_armel_eabi_linux_elf_fold, sizeof(stub_armel_eabi_linux_elf_fold), ft);
}
else {
buildLinuxLoader(
stub_arm_linux_elf_entry, sizeof(stub_arm_linux_elf_entry),
stub_arm_linux_elf_fold, sizeof(stub_arm_linux_elf_fold), ft);
}
}
static const
#include "stub/mipsel.r3000-linux.elf-entry.h"
static const
#include "stub/mipsel.r3000-linux.elf-fold.h"
void
PackLinuxElf32mipsel::buildLoader(Filter const *ft)
{
buildLinuxLoader(
stub_mipsel_r3000_linux_elf_entry, sizeof(stub_mipsel_r3000_linux_elf_entry),
stub_mipsel_r3000_linux_elf_fold, sizeof(stub_mipsel_r3000_linux_elf_fold), ft);
}
static const
#include "stub/mips.r3000-linux.elf-entry.h"
static const
#include "stub/mips.r3000-linux.elf-fold.h"
void
PackLinuxElf32mipseb::buildLoader(Filter const *ft)
{
buildLinuxLoader(
stub_mips_r3000_linux_elf_entry, sizeof(stub_mips_r3000_linux_elf_entry),
stub_mips_r3000_linux_elf_fold, sizeof(stub_mips_r3000_linux_elf_fold), ft);
}
static const
#include "stub/powerpc-linux.elf-entry.h"
static const
#include "stub/powerpc-linux.elf-fold.h"
void
PackLinuxElf32ppc::buildLoader(const Filter *ft)
{
buildLinuxLoader(
stub_powerpc_linux_elf_entry, sizeof(stub_powerpc_linux_elf_entry),
stub_powerpc_linux_elf_fold, sizeof(stub_powerpc_linux_elf_fold), ft);
}
static const
#include "stub/amd64-linux.elf-entry.h"
static const
#include "stub/amd64-linux.elf-fold.h"
static const
#include "stub/amd64-linux.shlib-init.h"
void
PackLinuxElf64amd::buildLoader(const Filter *ft)
{
if (0!=xct_off) { // shared library
buildLinuxLoader(
stub_amd64_linux_shlib_init, sizeof(stub_amd64_linux_shlib_init),
NULL, 0, ft );
return;
}
buildLinuxLoader(
stub_amd64_linux_elf_entry, sizeof(stub_amd64_linux_elf_entry),
stub_amd64_linux_elf_fold, sizeof(stub_amd64_linux_elf_fold), ft);
}
Elf32_Shdr const *PackLinuxElf32::elf_find_section_name(
char const *const name
) const
{
Elf32_Shdr const *shdr = shdri;
int j = n_elf_shnum;
for (; 0 <=--j; ++shdr) {
if (0==strcmp(name, &shstrtab[get_te32(&shdr->sh_name)])) {
return shdr;
}
}
return 0;
}
Elf32_Shdr const *PackLinuxElf32::elf_find_section_type(
unsigned const type
) const
{
Elf32_Shdr const *shdr = shdri;
int j = n_elf_shnum;
for (; 0 <=--j; ++shdr) {
if (type==get_te32(&shdr->sh_type)) {
return shdr;
}
}
return 0;
}
Elf64_Shdr const *PackLinuxElf64::elf_find_section_type(
unsigned const type
) const
{
Elf64_Shdr const *shdr = shdri;
int j = n_elf_shnum;
for (; 0 <=--j; ++shdr) {
if (type==get_te32(&shdr->sh_type)) {
return shdr;
}
}
return 0;
}
bool PackLinuxElf32::canPack()
{
union {
unsigned char buf[sizeof(Elf32_Ehdr) + 14*sizeof(Elf32_Phdr)];
//struct { Elf32_Ehdr ehdr; Elf32_Phdr phdr; } e;
} u;
COMPILE_TIME_ASSERT(sizeof(u.buf) <= 512)
fi->seek(0, SEEK_SET);
fi->readx(u.buf, sizeof(u.buf));
fi->seek(0, SEEK_SET);
Elf32_Ehdr const *const ehdr = (Elf32_Ehdr *) u.buf;
// now check the ELF header
if (checkEhdr(ehdr) != 0)
return false;
// additional requirements for linux/elf386
if (get_te16(&ehdr->e_ehsize) != sizeof(*ehdr)) {
throwCantPack("invalid Ehdr e_ehsize; try '--force-execve'");
return false;
}
unsigned const e_shoff = get_te32(&ehdr->e_shoff);
unsigned const e_phoff = get_te32(&ehdr->e_phoff);
if (e_phoff != sizeof(*ehdr)) {// Phdrs not contiguous with Ehdr
throwCantPack("non-contiguous Ehdr/Phdr; try '--force-execve'");
return false;
}
unsigned osabi0 = u.buf[Elf32_Ehdr::EI_OSABI];
// The first PT_LOAD32 must cover the beginning of the file (0==p_offset).
Elf32_Phdr const *phdr = (Elf32_Phdr const *)(u.buf + e_phoff);
for (unsigned j=0; j < e_phnum; ++phdr, ++j) {
if (j >= 14)
return false;
unsigned const p_type = get_te32(&phdr->p_type);
unsigned const p_offset = get_te32(&phdr->p_offset);
if (1!=exetype && phdr->PT_LOAD32 == p_type) {
if (p_offset != 0) {
throwCantPack("invalid Phdr p_offset; try '--force-execve'");
return false;
}
load_va = get_te32(&phdr->p_vaddr);
exetype = 1;
}
if (Elf32_Ehdr::ELFOSABI_NONE==osabi0 // Still seems to be generic.
&& NULL!=osabi_note && phdr->PT_NOTE == p_type) {
struct Elf32_Note note; memset(&note, 0, sizeof(note));
fi->seek(p_offset, SEEK_SET);
fi->readx(&note, sizeof(note));
fi->seek(0, SEEK_SET);
if (4==get_te32(&note.descsz)
&& 1==get_te32(&note.type)
&& 0==note.end
&& (1+ strlen(osabi_note))==get_te32(&note.namesz)
&& 0==strcmp(osabi_note, (char const *)note.text)
) {
osabi0 = ei_osabi; // Specified by PT_NOTE.
}
}
}
if (Elf32_Ehdr::ELFOSABI_NONE==osabi0) { // No EI_OSBAI, no PT_NOTE.
if (Elf32_Ehdr::EM_ARM==e_machine
&& Elf32_Ehdr::ELFDATA2LSB==ei_data
&& EF_ARM_EABI_VER4==(0xff000000 & get_te32(&ehdr->e_flags))) {
// armel-eabi ARM little-endian Linux EABI version 4 is a mess.
ei_osabi = osabi0 = Elf32_Ehdr::ELFOSABI_LINUX;
}
else {
osabi0 = opt->o_unix.osabi0; // Possibly specified by command-line.
}
}
if (osabi0!=ei_osabi) {
return false;
}
// We want to compress position-independent executable (gcc -pie)
// main programs, but compressing a shared library must be avoided
// because the result is no longer usable. In theory, there is no way
// to tell them apart: both are just ET_DYN. Also in theory,
// neither the presence nor the absence of any particular symbol name
// can be used to tell them apart; there are counterexamples.
// However, we will use the following heuristic suggested by
// Peter S. Mazinger <ps.m@gmx.net> September 2005:
// If a ET_DYN has __libc_start_main as a global undefined symbol,
// then the file is a position-independent executable main program
// (that depends on libc.so.6) and is eligible to be compressed.
// Otherwise (no __libc_start_main as global undefined): skip it.
// Also allow __uClibc_main and __uClibc_start_main .
if (Elf32_Ehdr::ET_DYN==get_te16(&ehdr->e_type)) {
// The DT_STRTAB has no designated length. Read the whole file.
file_image = new char[file_size];
fi->seek(0, SEEK_SET);
fi->readx(file_image, file_size);
memcpy(&ehdri, ehdr, sizeof(Elf32_Ehdr));
phdri= (Elf32_Phdr *)(e_phoff + file_image); // do not free() !!
shdri= (Elf32_Shdr const *)(e_shoff + file_image); // do not free() !!
n_elf_shnum = get_te16(&ehdr->e_shnum);
//sec_strndx = &shdri[ehdr->e_shstrndx];
//shstrtab = (char const *)(sec_strndx->sh_offset + file_image);
sec_dynsym = elf_find_section_type(Elf32_Shdr::SHT_DYNSYM);
if (sec_dynsym)
sec_dynstr = get_te32(&sec_dynsym->sh_link) + shdri;
int j= e_phnum;
phdr= phdri;
for (; --j>=0; ++phdr)
if (Elf32_Phdr::PT_DYNAMIC==get_te32(&phdr->p_type)) {
dynseg= (Elf32_Dyn const *)(get_te32(&phdr->p_offset) + file_image);
break;
}
// elf_find_dynamic() returns 0 if 0==dynseg.
dynstr= (char const *)elf_find_dynamic(Elf32_Dyn::DT_STRTAB);
dynsym= (Elf32_Sym const *)elf_find_dynamic(Elf32_Dyn::DT_SYMTAB);
// Modified 2009-10-10 to detect a ProgramLinkageTable relocation
// which references the symbol, because DT_GNU_HASH contains only
// defined symbols, and there might be no DT_HASH.
Elf32_Rel const *
jmprel= (Elf32_Rel const *)elf_find_dynamic(Elf32_Dyn::DT_JMPREL);
for ( int sz = elf_unsigned_dynamic(Elf32_Dyn::DT_PLTRELSZ);
0 < sz;
(sz -= sizeof(Elf32_Rel)), ++jmprel
) {
unsigned const symnum = get_te32(&jmprel->r_info) >> 8;
char const *const symnam = get_te32(&dynsym[symnum].st_name) + dynstr;
if (0==strcmp(symnam, "__libc_start_main")
|| 0==strcmp(symnam, "__uClibc_main")
|| 0==strcmp(symnam, "__uClibc_start_main"))
goto proceed;
}
// Heuristic HACK for shared libraries (compare Darwin (MacOS) Dylib.)
// If there is an existing DT_INIT, and if everything that the dynamic
// linker ld-linux needs to perform relocations before calling DT_INIT
// resides below the first SHT_EXECINSTR Section in one PT_LOAD, then
// compress from the first executable Section to the end of that PT_LOAD.
// We must not alter anything that ld-linux might touch before it calls
// the DT_INIT function.
//
// Obviously this hack requires that the linker script put pieces
// into good positions when building the original shared library,
// and also requires ld-linux to behave.
if (elf_find_dynamic(Elf32_Dyn::DT_INIT)) {
Elf32_Shdr const *shdr = shdri;
xct_va = ~0u;
for (j= n_elf_shnum; --j>=0; ++shdr) {
if (Elf32_Shdr::SHF_EXECINSTR & get_te32(&shdr->sh_flags)) {
xct_va = umin(xct_va, get_te32(&shdr->sh_addr));
}
}
// Rely on 0==elf_unsigned_dynamic(tag) if no such tag.
unsigned const va_gash = elf_unsigned_dynamic(Elf32_Dyn::DT_GNU_HASH);
unsigned const va_hash = elf_unsigned_dynamic(Elf32_Dyn::DT_HASH);
if (xct_va < va_gash || (0==va_gash && xct_va < va_hash)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_STRTAB)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_SYMTAB)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_REL)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_RELA)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_JMPREL)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_VERDEF)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_VERSYM)
|| xct_va < elf_unsigned_dynamic(Elf32_Dyn::DT_VERNEEDED) ) {
goto abandon;
}
for ((shdr= shdri), (j= n_elf_shnum); --j>=0; ++shdr) {
unsigned const sh_addr = get_te32(&shdr->sh_addr);
if ( sh_addr==va_gash
|| (sh_addr==va_hash && 0==va_gash) ) {
shdr= &shdri[get_te32(&shdr->sh_link)]; // the associated SHT_SYMTAB
hatch_off = (char *)&ehdri.e_ident[12] - (char *)&ehdri;
break;
}
}
// FIXME: DT_TEXTREL
xct_off = elf_get_offset_from_address(xct_va);
goto proceed; // But proper packing depends on checking xct_va.
}
else
infoWarning("no DT_INIT: %s", fi->getName());
abandon:
phdri = 0; // Done with this
return false;
proceed:
phdri = 0;
}
// XXX Theoretically the following test should be first,
// but PackUnix::canPack() wants 0!=exetype ?
if (!super::canPack())
return false;
assert(exetype == 1);
exetype = 0;
// set options
opt->o_unix.blocksize = blocksize = file_size;
return true;
}
bool
PackLinuxElf64amd::canPack()
{
union {
unsigned char buf[sizeof(Elf64_Ehdr) + 14*sizeof(Elf64_Phdr)];
//struct { Elf64_Ehdr ehdr; Elf64_Phdr phdr; } e;
} u;
COMPILE_TIME_ASSERT(sizeof(u) <= 1024)
fi->readx(u.buf, sizeof(u.buf));
fi->seek(0, SEEK_SET);
Elf64_Ehdr const *const ehdr = (Elf64_Ehdr *) u.buf;
// now check the ELF header
if (checkEhdr(ehdr) != 0)
return false;
// additional requirements for linux/elf386
if (get_te16(&ehdr->e_ehsize) != sizeof(*ehdr)) {
throwCantPack("invalid Ehdr e_ehsize; try '--force-execve'");
return false;
}
acc_uint64l_t const e_shoff = get_te64(&ehdr->e_shoff);
acc_uint64l_t const e_phoff = get_te64(&ehdr->e_phoff);
if (e_phoff != sizeof(*ehdr)) {// Phdrs not contiguous with Ehdr
throwCantPack("non-contiguous Ehdr/Phdr; try '--force-execve'");
return false;
}
// The first PT_LOAD64 must cover the beginning of the file (0==p_offset).
Elf64_Phdr const *phdr = (Elf64_Phdr const *)(u.buf + (unsigned) e_phoff);
for (unsigned j=0; j < e_phnum; ++phdr, ++j) {
if (j >= 14)
return false;
if (phdr->PT_LOAD64 == get_te32(&phdr->p_type)) {
// Just avoid the "rewind" when unpacking?
//if (phdr->p_offset != 0) {
// throwCantPack("invalid Phdr p_offset; try '--force-execve'");
// return false;
//}
load_va = get_te64(&phdr->p_vaddr);
exetype = 1;
break;
}
}
// We want to compress position-independent executable (gcc -pie)
// main programs, but compressing a shared library must be avoided
// because the result is no longer usable. In theory, there is no way
// to tell them apart: both are just ET_DYN. Also in theory,
// neither the presence nor the absence of any particular symbol name
// can be used to tell them apart; there are counterexamples.
// However, we will use the following heuristic suggested by
// Peter S. Mazinger <ps.m@gmx.net> September 2005:
// If a ET_DYN has __libc_start_main as a global undefined symbol,
// then the file is a position-independent executable main program
// (that depends on libc.so.6) and is eligible to be compressed.
// Otherwise (no __libc_start_main as global undefined): skip it.
// Also allow __uClibc_main and __uClibc_start_main .
if (Elf32_Ehdr::ET_DYN==get_te16(&ehdr->e_type)) {
// The DT_STRTAB has no designated length. Read the whole file.
file_image = new char[file_size];
fi->seek(0, SEEK_SET);
fi->readx(file_image, file_size);
memcpy(&ehdri, ehdr, sizeof(Elf32_Ehdr));
phdri= (Elf64_Phdr *)((size_t)e_phoff + file_image); // do not free() !!
shdri= (Elf64_Shdr const *)((size_t)e_shoff + file_image); // do not free() !!
n_elf_shnum = get_te16(&ehdr->e_shnum);
//sec_strndx = &shdri[ehdr->e_shstrndx];
//shstrtab = (char const *)(sec_strndx->sh_offset + file_image);
sec_dynsym = elf_find_section_type(Elf64_Shdr::SHT_DYNSYM);
if (sec_dynsym)
sec_dynstr = get_te32(&sec_dynsym->sh_link) + shdri;
int j= e_phnum;
phdr= phdri;
for (; --j>=0; ++phdr)
if (Elf64_Phdr::PT_DYNAMIC==get_te32(&phdr->p_type)) {
dynseg= (Elf64_Dyn const *)(get_te32(&phdr->p_offset) + file_image);
break;
}
// elf_find_dynamic() returns 0 if 0==dynseg.
dynstr= (char const *)elf_find_dynamic(Elf64_Dyn::DT_STRTAB);
dynsym= (Elf64_Sym const *)elf_find_dynamic(Elf64_Dyn::DT_SYMTAB);
// Modified 2009-10-10 to detect a ProgramLinkageTable relocation
// which references the symbol, because DT_GNU_HASH contains only
// defined symbols, and there might be no DT_HASH.
Elf64_Rela const *
jmprela= (Elf64_Rela const *)elf_find_dynamic(Elf64_Dyn::DT_JMPREL);
for ( int sz = elf_unsigned_dynamic(Elf64_Dyn::DT_PLTRELSZ);
0 < sz;
(sz -= sizeof(Elf64_Rela)), ++jmprela
) {
unsigned const symnum = get_te64(&jmprela->r_info) >> 32;
char const *const symnam = get_te32(&dynsym[symnum].st_name) + dynstr;
if (0==strcmp(symnam, "__libc_start_main")
|| 0==strcmp(symnam, "__uClibc_main")
|| 0==strcmp(symnam, "__uClibc_start_main"))
goto proceed;
}
// Heuristic HACK for shared libraries (compare Darwin (MacOS) Dylib.)
// If there is an existing DT_INIT, and if everything that the dynamic
// linker ld-linux needs to perform relocations before calling DT_INIT
// resides below the first SHT_EXECINSTR Section in one PT_LOAD, then
// compress from the first executable Section to the end of that PT_LOAD.
// We must not alter anything that ld-linux might touch before it calls
// the DT_INIT function.
//
// Obviously this hack requires that the linker script put pieces
// into good positions when building the original shared library,
// and also requires ld-linux to behave.
if (elf_find_dynamic(Elf64_Dyn::DT_INIT)) {
Elf64_Shdr const *shdr = shdri;
xct_va = ~0ull;
for (j= n_elf_shnum; --j>=0; ++shdr) {
if (Elf64_Shdr::SHF_EXECINSTR & get_te32(&shdr->sh_flags)) {
xct_va = umin64(xct_va, get_te64(&shdr->sh_addr));
}
}
// Rely on 0==elf_unsigned_dynamic(tag) if no such tag.
acc_uint64l_t const va_gash = elf_unsigned_dynamic(Elf64_Dyn::DT_GNU_HASH);
acc_uint64l_t const va_hash = elf_unsigned_dynamic(Elf64_Dyn::DT_HASH);
if (xct_va < va_gash || (0==va_gash && xct_va < va_hash)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_STRTAB)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_SYMTAB)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_REL)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_RELA)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_JMPREL)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_VERDEF)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_VERSYM)
|| xct_va < elf_unsigned_dynamic(Elf64_Dyn::DT_VERNEEDED) ) {
goto abandon;
}
for ((shdr= shdri), (j= n_elf_shnum); --j>=0; ++shdr) {
acc_uint64l_t const sh_addr = get_te64(&shdr->sh_addr);
if ( sh_addr==va_gash
|| (sh_addr==va_hash && 0==va_gash) ) {
shdr= &shdri[get_te32(&shdr->sh_link)]; // the associated SHT_SYMTAB
hatch_off = (char *)&ehdri.e_ident[11] - (char *)&ehdri;
break;
}
}
// FIXME: DT_TEXTREL
xct_off = elf_get_offset_from_address(xct_va);
goto proceed; // But proper packing depends on checking xct_va.
}
abandon:
phdri = 0; // Done with this
return false;
proceed:
phdri = 0;
}
// XXX Theoretically the following test should be first,
// but PackUnix::canPack() wants 0!=exetype ?
if (!super::canPack())
return false;
assert(exetype == 1);
exetype = 0;
// set options
opt->o_unix.blocksize = blocksize = file_size;
return true;
}
off_t
PackLinuxElf32::getbrk(const Elf32_Phdr *phdr, int nph) const
{
off_t brka = 0;
for (int j = 0; j < nph; ++phdr, ++j) {
if (PT_LOAD32 == get_te32(&phdr->p_type)) {
off_t b = get_te32(&phdr->p_vaddr) + get_te32(&phdr->p_memsz);
if (b > brka)
brka = b;
}
}
return brka;
}
off_t
PackLinuxElf32::getbase(const Elf32_Phdr *phdr, int nph) const
{
off_t base = ~0u;
for (int j = 0; j < nph; ++phdr, ++j) {
if (phdr->PT_LOAD == get_te32(&phdr->p_type)) {
unsigned const vaddr = get_te32(&phdr->p_vaddr);
if (vaddr < (unsigned) base)
base = vaddr;
}
}
if (0!=base) {
return base;
}
return 0x12000;
}
off_t
PackLinuxElf64::getbrk(const Elf64_Phdr *phdr, int nph) const
{
off_t brka = 0;
for (int j = 0; j < nph; ++phdr, ++j) {
if (PT_LOAD64 == get_te32(&phdr->p_type)) {
off_t b = get_te64(&phdr->p_vaddr) + get_te64(&phdr->p_memsz);
if (b > brka)
brka = b;
}
}
return brka;
}
void
PackLinuxElf32::generateElfHdr(
OutputFile *fo,
void const *proto,
unsigned const brka
)
{
cprElfHdr2 *const h2 = (cprElfHdr2 *)(void *)&elfout;
cprElfHdr3 *const h3 = (cprElfHdr3 *)(void *)&elfout;
memcpy(h3, proto, sizeof(*h3)); // reads beyond, but OK
h3->ehdr.e_type = ehdri.e_type; // ET_EXEC vs ET_DYN (gcc -pie -fPIC)
h3->ehdr.e_ident[Elf32_Ehdr::EI_OSABI] = ei_osabi;
if (Elf32_Ehdr::EM_MIPS==e_machine) { // MIPS R3000 FIXME
h3->ehdr.e_ident[Elf32_Ehdr::EI_OSABI] = Elf32_Ehdr::ELFOSABI_NONE;
h3->ehdr.e_flags = ehdri.e_flags;
}
assert(get_te32(&h2->ehdr.e_phoff) == sizeof(Elf32_Ehdr));
h2->ehdr.e_shoff = 0;
assert(get_te16(&h2->ehdr.e_ehsize) == sizeof(Elf32_Ehdr));
assert(get_te16(&h2->ehdr.e_phentsize) == sizeof(Elf32_Phdr));
set_te16(&h2->ehdr.e_shentsize, sizeof(Elf32_Shdr));
h2->ehdr.e_shnum = 0;
h2->ehdr.e_shstrndx = 0;
sz_elf_hdrs = sizeof(*h2) - sizeof(linfo); // default
set_te32(&h2->phdr[0].p_filesz, sizeof(*h2)); // + identsize;
h2->phdr[0].p_memsz = h2->phdr[0].p_filesz;
for (unsigned j=0; j < 3; ++j) {
set_te32(&h3->phdr[j].p_align, page_size);
}
// Info for OS kernel to set the brk()
if (brka) {
// linux-2.6.14 binfmt_elf.c: SIGKILL if (0==.p_memsz) on a page boundary
unsigned const brkb = brka | ((0==(~page_mask & brka)) ? 0x20 : 0);
set_te32(&h2->phdr[1].p_type, PT_LOAD32); // be sure
set_te32(&h2->phdr[1].p_offset, ~page_mask & brkb);
set_te32(&h2->phdr[1].p_vaddr, brkb);
set_te32(&h2->phdr[1].p_paddr, brkb);
h2->phdr[1].p_filesz = 0;
h2->phdr[1].p_memsz = 0;
set_te32(&h2->phdr[1].p_flags, Elf32_Phdr::PF_R | Elf32_Phdr::PF_W);
}
if (ph.format==getFormat()) {
assert(2==get_te16(&h2->ehdr.e_phnum));
set_te32(&h2->phdr[0].p_flags, ~Elf32_Phdr::PF_W & get_te32(&h2->phdr[0].p_flags));
memset(&h2->linfo, 0, sizeof(h2->linfo));
fo->write(h2, sizeof(*h2));
}
else {
assert(false); // unknown ph.format, PackLinuxElf32
}
}
void
PackOpenBSDElf32x86::generateElfHdr(
OutputFile *fo,
void const *proto,
unsigned const brka
)
{
cprElfHdr3 *const h3 = (cprElfHdr3 *)&elfout;
memcpy(h3, proto, sizeof(*h3)); // reads beyond, but OK
h3->ehdr.e_ident[Elf32_Ehdr::EI_OSABI] = ei_osabi;
assert(2==get_te16(&h3->ehdr.e_phnum));
set_te16(&h3->ehdr.e_phnum, 3);
assert(get_te32(&h3->ehdr.e_phoff) == sizeof(Elf32_Ehdr));
h3->ehdr.e_shoff = 0;
assert(get_te16(&h3->ehdr.e_ehsize) == sizeof(Elf32_Ehdr));
assert(get_te16(&h3->ehdr.e_phentsize) == sizeof(Elf32_Phdr));
set_te16(&h3->ehdr.e_shentsize, sizeof(Elf32_Shdr));
h3->ehdr.e_shnum = 0;
h3->ehdr.e_shstrndx = 0;
sz_elf_hdrs = sizeof(*h3) - sizeof(linfo);
unsigned const note_offset = sz_elf_hdrs;
set_te32(&h3->phdr[0].p_filesz, sizeof(*h3)+sizeof(elfnote)); // + identsize;
h3->phdr[0].p_memsz = h3->phdr[0].p_filesz;
unsigned const brkb = brka | ((0==(~page_mask & brka)) ? 0x20 : 0);
set_te32(&h3->phdr[1].p_type, PT_LOAD32); // be sure
set_te32(&h3->phdr[1].p_offset, ~page_mask & brkb);
set_te32(&h3->phdr[1].p_vaddr, brkb);
set_te32(&h3->phdr[1].p_paddr, brkb);
h3->phdr[1].p_filesz = 0;
h3->phdr[1].p_memsz = 0;
set_te32(&h3->phdr[1].p_flags, Elf32_Phdr::PF_R | Elf32_Phdr::PF_W);
set_te32(&h3->phdr[2].p_type, Elf32_Phdr::PT_NOTE);
set_te32(&h3->phdr[2].p_offset, note_offset);
set_te32(&h3->phdr[2].p_vaddr, note_offset);
set_te32(&h3->phdr[2].p_paddr, note_offset);
set_te32(&h3->phdr[2].p_filesz, sizeof(elfnote));
set_te32(&h3->phdr[2].p_memsz, sizeof(elfnote));
set_te32(&h3->phdr[2].p_flags, Elf32_Phdr::PF_R);
set_te32(&h3->phdr[2].p_align, 4);
set_te32(&elfnote.namesz, 8);
set_te32(&elfnote.descsz, 4);
set_te32(&elfnote.type, 1);
strcpy(elfnote.text, "OpenBSD");
elfnote.end = 0;
if (ph.format==getFormat()) {
memset(&h3->linfo, 0, sizeof(h3->linfo));
fo->write(h3, sizeof(*h3) - sizeof(h3->linfo));
fo->write(&elfnote, sizeof(elfnote));
fo->write(&h3->linfo, sizeof(h3->linfo));
}
else {
assert(false); // unknown ph.format, PackLinuxElf32
}
}
void
PackLinuxElf64::generateElfHdr(
OutputFile *fo,
void const *proto,
unsigned const brka
)
{
cprElfHdr2 *const h2 = (cprElfHdr2 *)(void *)&elfout;
cprElfHdr3 *const h3 = (cprElfHdr3 *)(void *)&elfout;
memcpy(h3, proto, sizeof(*h3)); // reads beyond, but OK
h3->ehdr.e_type = ehdri.e_type; // ET_EXEC vs ET_DYN (gcc -pie -fPIC)
h3->ehdr.e_ident[Elf32_Ehdr::EI_OSABI] = ei_osabi;
assert(get_te32(&h2->ehdr.e_phoff) == sizeof(Elf64_Ehdr));
h2->ehdr.e_shoff = 0;
assert(get_te16(&h2->ehdr.e_ehsize) == sizeof(Elf64_Ehdr));
assert(get_te16(&h2->ehdr.e_phentsize) == sizeof(Elf64_Phdr));
set_te16(&h2->ehdr.e_shentsize, sizeof(Elf64_Shdr));
h2->ehdr.e_shnum = 0;
h2->ehdr.e_shstrndx = 0;
sz_elf_hdrs = sizeof(*h2) - sizeof(linfo); // default
set_te64(&h2->phdr[0].p_filesz, sizeof(*h2)); // + identsize;
h2->phdr[0].p_memsz = h2->phdr[0].p_filesz;
for (unsigned j=0; j < 3; ++j) {
set_te64(&h3->phdr[j].p_align, page_size);
}
// Info for OS kernel to set the brk()
if (brka) {
// linux-2.6.14 binfmt_elf.c: SIGKILL if (0==.p_memsz) on a page boundary
unsigned const brkb = brka | ((0==(~page_mask & brka)) ? 0x20 : 0);
set_te32(&h2->phdr[1].p_type, PT_LOAD64); // be sure
set_te64(&h2->phdr[1].p_offset, ~page_mask & brkb);
set_te64(&h2->phdr[1].p_vaddr, brkb);
set_te64(&h2->phdr[1].p_paddr, brkb);
h2->phdr[1].p_filesz = 0;
h2->phdr[1].p_memsz = 0;
set_te32(&h2->phdr[1].p_flags, Elf64_Phdr::PF_R | Elf64_Phdr::PF_W);
}
if (ph.format==getFormat()) {
assert(2==get_te16(&h2->ehdr.e_phnum));
set_te32(&h2->phdr[0].p_flags, ~Elf64_Phdr::PF_W & get_te32(&h2->phdr[0].p_flags));
memset(&h2->linfo, 0, sizeof(h2->linfo));
fo->write(h2, sizeof(*h2));
}
else {
assert(false); // unknown ph.format, PackLinuxElf64
}
}
void PackLinuxElf32::pack1(OutputFile * /*fo*/, Filter & /*ft*/)
{
fi->seek(0, SEEK_SET);
fi->readx(&ehdri, sizeof(ehdri));
unsigned const e_phoff = get_te32(&ehdri.e_phoff);
assert(e_phoff == sizeof(Elf32_Ehdr)); // checked by canPack()
sz_phdrs = e_phnum * get_te16(&ehdri.e_phentsize);
phdri = new Elf32_Phdr[e_phnum];
fi->seek(e_phoff, SEEK_SET);
fi->readx(phdri, sz_phdrs);
Elf32_Phdr const *phdr = phdri;
for (unsigned j=0; j < e_phnum; ++phdr, ++j) {
if (phdr->PT_LOAD32 == get_te32(&phdr->p_type)) {
unsigned x = get_te32(&phdr->p_align) >> lg2_page;
while (x>>=1) {
++lg2_page;
}
}
}
page_size = 1u<<lg2_page;
page_mask = ~0u<<lg2_page;
progid = 0; // getRandomId(); not useful, so do not clutter
}
void PackLinuxElf32x86::pack1(OutputFile *fo, Filter &ft)
{
super::pack1(fo, ft);
if (0!=xct_off) { // shared library
fi->seek(0, SEEK_SET);
fi->readx(ibuf, xct_off);
sz_elf_hdrs = xct_off - sizeof(l_info);
fo->write(ibuf, xct_off);
return;
}
generateElfHdr(fo, stub_i386_linux_elf_fold,
getbrk(phdri, e_phnum) );
}
void PackBSDElf32x86::pack1(OutputFile *fo, Filter &ft)
{
PackLinuxElf32::pack1(fo, ft);
generateElfHdr(fo, stub_i386_bsd_elf_fold, getbrk(phdri, e_phnum) );
}
void PackLinuxElf32armLe::pack1(OutputFile *fo, Filter &ft)
{
super::pack1(fo, ft);
if (0!=xct_off) { // shared library
fi->seek(0, SEEK_SET);
fi->readx(ibuf, xct_off);
sz_elf_hdrs = xct_off - sizeof(l_info);
fo->write(ibuf, xct_off);
return;
}
cprElfHdr3 h3;
if (Elf32_Ehdr::ELFOSABI_LINUX==ei_osabi) {
memcpy(&h3, stub_armel_eabi_linux_elf_fold, sizeof(Elf32_Ehdr) + 2*sizeof(Elf32_Phdr));
set_te32(&h3.ehdr.e_flags, EF_ARM_EABI_VER4 | EF_ARM_HASENTRY);
h3.ehdr.e_ident[Elf32_Ehdr::EI_ABIVERSION] = 4;
}
else {
memcpy(&h3, stub_arm_linux_elf_fold, sizeof(Elf32_Ehdr) + 2*sizeof(Elf32_Phdr));
}
generateElfHdr(fo, &h3, getbrk(phdri, e_phnum) );
}
void PackLinuxElf32armBe::pack1(OutputFile *fo, Filter &ft)
{
super::pack1(fo, ft);
cprElfHdr3 h3;
memcpy(&h3, stub_armeb_linux_elf_fold, sizeof(Elf32_Ehdr) + 2*sizeof(Elf32_Phdr));
generateElfHdr(fo, &h3, getbrk(phdri, e_phnum) );
}
void PackLinuxElf32mipsel::pack1(OutputFile *fo, Filter &ft)
{
super::pack1(fo, ft);
cprElfHdr3 h3;
memcpy(&h3, stub_mipsel_r3000_linux_elf_fold, sizeof(Elf32_Ehdr) + 2*sizeof(Elf32_Phdr));
generateElfHdr(fo, &h3, getbrk(phdri, e_phnum) );
}
void PackLinuxElf32mipseb::pack1(OutputFile *fo, Filter &ft)
{
super::pack1(fo, ft);
cprElfHdr3 h3;
memcpy(&h3, stub_mips_r3000_linux_elf_fold, sizeof(Elf32_Ehdr) + 2*sizeof(Elf32_Phdr));
generateElfHdr(fo, &h3, getbrk(phdri, e_phnum) );
}
void PackLinuxElf32ppc::pack1(OutputFile *fo, Filter &ft)
{
super::pack1(fo, ft);
generateElfHdr(fo, stub_powerpc_linux_elf_fold, getbrk(phdri, e_phnum) );
}
void PackLinuxElf64::pack1(OutputFile * /*fo*/, Filter & /*ft*/)
{
fi->seek(0, SEEK_SET);
fi->readx(&ehdri, sizeof(ehdri));
unsigned const e_phoff = get_te32(&ehdri.e_phoff);
assert(e_phoff == sizeof(Elf64_Ehdr)); // checked by canPack()
sz_phdrs = e_phnum * get_te16(&ehdri.e_phentsize);
phdri = new Elf64_Phdr[e_phnum];
fi->seek(e_phoff, SEEK_SET);
fi->readx(phdri, sz_phdrs);
Elf64_Phdr const *phdr = phdri;
for (unsigned j=0; j < e_phnum; ++phdr, ++j) {
if (phdr->PT_LOAD64 == get_te64(&phdr->p_type)) {
unsigned x = get_te64(&phdr->p_align) >> lg2_page;
while (x>>=1) {
++lg2_page;
}
}
}
page_size = 1u <<lg2_page;
page_mask = ~0ull<<lg2_page;
progid = 0; // getRandomId(); not useful, so do not clutter
}
void PackLinuxElf64amd::pack1(OutputFile *fo, Filter &ft)
{
super::pack1(fo, ft);
if (0==xct_off) // main executable
generateElfHdr(fo, stub_amd64_linux_elf_fold, getbrk(phdri, e_phnum) );
else { // shared library
fi->seek(0, SEEK_SET);
fi->readx(ibuf, xct_off);
sz_elf_hdrs = xct_off - sizeof(l_info);
fo->write(ibuf, xct_off);
}
}
// Determine length of gap between PT_LOAD phdr[k] and closest PT_LOAD
// which follows in the file (or end-of-file). Optimize for common case
// where the PT_LOAD are adjacent ascending by .p_offset. Assume no overlap.
unsigned PackLinuxElf32::find_LOAD_gap(
Elf32_Phdr const *const phdr,
unsigned const k,
unsigned const nph
)
{
if (PT_LOAD32!=get_te32(&phdr[k].p_type)) {
return 0;
}
unsigned const hi = get_te32(&phdr[k].p_offset) +
get_te32(&phdr[k].p_filesz);
unsigned lo = ph.u_file_size;
if (lo < hi)
throwCantPack("bad input: PT_LOAD beyond end-of-file");
unsigned j = k;
for (;;) { // circular search, optimize for adjacent ascending
++j;
if (nph==j) {
j = 0;
}
if (k==j) {
break;
}
if (PT_LOAD32==get_te32(&phdr[j].p_type)) {
unsigned const t = get_te32(&phdr[j].p_offset);
if ((t - hi) < (lo - hi)) {
lo = t;
if (hi==lo) {
break;
}
}
}
}
return lo - hi;
}
void PackLinuxElf32::pack2(OutputFile *fo, Filter &ft)
{
Extent x;
unsigned k;
bool const is_shlib = (0!=xct_off);
// count passes, set ptload vars
uip->ui_total_passes = 0;
for (k = 0; k < e_phnum; ++k) {
if (PT_LOAD32==get_te32(&phdri[k].p_type)) {
uip->ui_total_passes++;
if (find_LOAD_gap(phdri, k, e_phnum)) {
uip->ui_total_passes++;
}
}
}
uip->ui_total_passes -= !!is_shlib; // not .data of shlib
// compress extents
unsigned hdr_u_len = sizeof(Elf32_Ehdr) + sz_phdrs;
unsigned total_in = xct_off - (is_shlib ? hdr_u_len : 0);
unsigned total_out = xct_off;
uip->ui_pass = 0;
ft.addvalue = 0;
int nx = 0;
for (k = 0; k < e_phnum; ++k) if (PT_LOAD32==get_te32(&phdri[k].p_type)) {
if (ft.id < 0x40) {
// FIXME: ?? ft.addvalue = phdri[k].p_vaddr;
}
x.offset = get_te32(&phdri[k].p_offset);
x.size = get_te32(&phdri[k].p_filesz);
if (0 == nx) { // 1st PT_LOAD32 must cover Ehdr at 0==p_offset
unsigned const delta = !is_shlib
? (sizeof(Elf32_Ehdr) + sz_phdrs) // main executable
: xct_off; // shared library
if (ft.id < 0x40) {
// FIXME: ?? ft.addvalue += delta;
}
x.offset += delta;
x.size -= delta;
}
// compressWithFilters() always assumes a "loader", so would
// throw NotCompressible for small .data Extents, which PowerPC
// sometimes marks as PF_X anyway. So filter only first segment.
if (0==nx || !is_shlib)
packExtent(x, total_in, total_out,
((0==nx && (Elf32_Phdr::PF_X & get_te32(&phdri[k].p_flags)))
? &ft : 0 ), fo, hdr_u_len);
else
total_in += x.size;
hdr_u_len = 0;
++nx;
}
for (k = 0; k < e_phnum; ++k) {
x.size = find_LOAD_gap(phdri, k, e_phnum);
if (x.size) {
x.offset = get_te32(&phdri[k].p_offset) +
get_te32(&phdri[k].p_filesz);
packExtent(x, total_in, total_out, 0, fo);
}
}
if ((off_t)total_in != file_size)
throwEOFException();
}
// Determine length of gap between PT_LOAD phdr[k] and closest PT_LOAD
// which follows in the file (or end-of-file). Optimize for common case
// where the PT_LOAD are adjacent ascending by .p_offset. Assume no overlap.
unsigned PackLinuxElf64::find_LOAD_gap(
Elf64_Phdr const *const phdr,
unsigned const k,
unsigned const nph
)
{
if (PT_LOAD64!=get_te32(&phdr[k].p_type)) {
return 0;
}
unsigned const hi = get_te64(&phdr[k].p_offset) +
get_te64(&phdr[k].p_filesz);
unsigned lo = ph.u_file_size;
if (lo < hi)
throwCantPack("bad input: PT_LOAD beyond end-of-file");
unsigned j = k;
for (;;) { // circular search, optimize for adjacent ascending
++j;
if (nph==j) {
j = 0;
}
if (k==j) {
break;
}
if (PT_LOAD64==get_te32(&phdr[j].p_type)) {
unsigned const t = get_te64(&phdr[j].p_offset);
if ((t - hi) < (lo - hi)) {
lo = t;
if (hi==lo) {
break;
}
}
}
}
return lo - hi;
}
void PackLinuxElf64::pack2(OutputFile *fo, Filter &ft)
{
Extent x;
unsigned k;
bool const is_shlib = (0!=xct_off);
// count passes, set ptload vars
uip->ui_total_passes = 0;
for (k = 0; k < e_phnum; ++k) {
if (PT_LOAD64==get_te32(&phdri[k].p_type)) {
uip->ui_total_passes++;
if (find_LOAD_gap(phdri, k, e_phnum)) {
uip->ui_total_passes++;
}
}
}
uip->ui_total_passes -= !!is_shlib; // not .data of shlib
// compress extents
unsigned hdr_u_len = sizeof(Elf64_Ehdr) + sz_phdrs;
unsigned total_in = xct_off - (is_shlib ? hdr_u_len : 0);
unsigned total_out = xct_off;
uip->ui_pass = 0;
ft.addvalue = 0;
int nx = 0;
for (k = 0; k < e_phnum; ++k) if (PT_LOAD64==get_te32(&phdri[k].p_type)) {
if (ft.id < 0x40) {
// FIXME: ?? ft.addvalue = phdri[k].p_vaddr;
}
x.offset = get_te64(&phdri[k].p_offset);
x.size = get_te64(&phdri[k].p_filesz);
if (0 == nx) { // 1st PT_LOAD64 must cover Ehdr at 0==p_offset
unsigned const delta = !is_shlib
? (sizeof(Elf64_Ehdr) + sz_phdrs) // main executable
: xct_off; // shared library
if (ft.id < 0x40) {
// FIXME: ?? ft.addvalue += delta;
}
x.offset += delta;
x.size -= delta;
}
// compressWithFilters() always assumes a "loader", so would
// throw NotCompressible for small .data Extents, which PowerPC
// sometimes marks as PF_X anyway. So filter only first segment.
if (0==nx || !is_shlib)
packExtent(x, total_in, total_out,
((0==nx && (Elf64_Phdr::PF_X & get_te64(&phdri[k].p_flags)))
? &ft : 0 ), fo, hdr_u_len);
else
total_in += x.size;
hdr_u_len = 0;
++nx;
}
for (k = 0; k < e_phnum; ++k) {
x.size = find_LOAD_gap(phdri, k, e_phnum);
if (x.size) {
x.offset = get_te64(&phdri[k].p_offset) +
get_te64(&phdri[k].p_filesz);
packExtent(x, total_in, total_out, 0, fo);
}
}
if ((off_t)total_in != file_size)
throwEOFException();
}
// Filter 0x50, 0x51 assume HostPolicy::isLE
static const int *
ARM_getFilters(bool const isBE)
{
static const int f50[] = { 0x50, FT_END };
static const int f51[] = { 0x51, FT_END };
if (isBE)
return f51;
return f50;
}
const int *
PackLinuxElf32armBe::getFilters() const
{
return ARM_getFilters(true);
}
const int *
PackLinuxElf32armLe::getFilters() const
{
return ARM_getFilters(false);
}
const int *
PackLinuxElf32mipseb::getFilters() const
{
static const int f_none[] = { FT_END };
return f_none;
}
const int *
PackLinuxElf32mipsel::getFilters() const
{
static const int f_none[] = { FT_END };
return f_none;
}
void PackLinuxElf32::ARM_defineSymbols(Filter const * /*ft*/)
{
unsigned const hlen = sz_elf_hdrs + sizeof(l_info) + sizeof(p_info);
lsize = /*getLoaderSize()*/ 4 * 1024; // upper bound; avoid circularity
unsigned const lo_va_user = 0x8000; // XXX
unsigned lo_va_stub = get_te32(&elfout.phdr[0].p_vaddr);
unsigned adrc;
unsigned adrm;
unsigned adrx;
bool const is_big = true;
if (is_big) {
set_te32( &elfout.ehdr.e_entry, linker->getSymbolOffset("_start") +
get_te32(&elfout.ehdr.e_entry) + lo_va_user - lo_va_stub);
set_te32(&elfout.phdr[0].p_vaddr, lo_va_user);
set_te32(&elfout.phdr[0].p_paddr, lo_va_user);
lo_va_stub = lo_va_user;
adrc = lo_va_stub;
adrm = getbrk(phdri, e_phnum);
adrx = hlen + (page_mask & (~page_mask + adrm)); // round up to page boundary
}
adrm = page_mask & (~page_mask + adrm); // round up to page boundary
adrc = page_mask & (~page_mask + adrc); // round up to page boundary
linker->defineSymbol("CPR0", 4+ linker->getSymbolOffset("cpr0"));
linker->defineSymbol("LENF", 4+ linker->getSymbolOffset("end_decompress"));
linker->defineSymbol("ADRM", adrm); // addr for map
}
void PackLinuxElf32armLe::defineSymbols(Filter const *ft)
{
ARM_defineSymbols(ft);
}
void PackLinuxElf32armBe::defineSymbols(Filter const *ft)
{
ARM_defineSymbols(ft);
}
void PackLinuxElf32mipseb::defineSymbols(Filter const * /*ft*/)
{
unsigned const hlen = sz_elf_hdrs + sizeof(l_info) + sizeof(p_info);
// We want to know if compressed data, plus stub, plus a couple pages,
// will fit below the uncompressed program in memory. But we don't
// know the final total compressed size yet, so use the uncompressed
// size (total over all PT_LOAD32) as an upper bound.
unsigned len = 0;
unsigned lo_va_user = ~0u; // infinity
for (int j= e_phnum; --j>=0; ) {
if (PT_LOAD32 == get_te32(&phdri[j].p_type)) {
len += (unsigned)get_te32(&phdri[j].p_filesz);
unsigned const va = get_te32(&phdri[j].p_vaddr);
if (va < lo_va_user) {
lo_va_user = va;
}
}
}
lsize = /*getLoaderSize()*/ 64 * 1024; // XXX: upper bound; avoid circularity
unsigned lo_va_stub = get_te32(&elfout.phdr[0].p_vaddr);
unsigned adrc;
unsigned adrm;
unsigned adru;
unsigned adrx;
unsigned cntc;
unsigned lenm;
unsigned lenu;
len += (7&-lsize) + lsize;
bool const is_big = (lo_va_user < (lo_va_stub + len + 2*page_size));
if (is_big) {
set_te32( &elfout.ehdr.e_entry,
get_te32(&elfout.ehdr.e_entry) + lo_va_user - lo_va_stub);
set_te32(&elfout.phdr[0].p_vaddr, lo_va_user);
set_te32(&elfout.phdr[0].p_paddr, lo_va_user);
lo_va_stub = lo_va_user;
adrc = lo_va_stub;
adrm = getbrk(phdri, e_phnum);
adru = page_mask & (~page_mask + adrm); // round up to page boundary
adrx = adru + hlen;
lenm = page_size + len;
lenu = page_size + len;
cntc = len >> 3; // over-estimate; corrected at runtime
}
else {
adrm = lo_va_stub + len;
adrc = adrm;
adru = lo_va_stub;
adrx = lo_va_stub + hlen;
lenm = page_size;
lenu = page_size + len;
cntc = 0;
}
adrm = page_mask & (~page_mask + adrm); // round up to page boundary
adrc = page_mask & (~page_mask + adrc); // round up to page boundary
linker->defineSymbol("ADRX", adrx); // compressed input for eXpansion
// For actual moving, we need the true count, which depends on sz_pack2
// and is not yet known. So the runtime stub detects "no move"
// if adrm==adrc, and otherwise uses actual sz_pack2 to compute cntc.
//linker->defineSymbol("CNTC", cntc); // count for copy
linker->defineSymbol("ADRC", adrc); // addr for copy
linker->defineSymbol("LENU", lenu); // len for unmap
linker->defineSymbol("ADRU", adru); // addr for unmap
linker->defineSymbol("LENM", lenm); // len for map
linker->defineSymbol("ADRM", adrm); // addr for map
//linker->dumpSymbols(); // debug
}
void PackLinuxElf32mipsel::defineSymbols(Filter const * /*ft*/)
{
unsigned const hlen = sz_elf_hdrs + sizeof(l_info) + sizeof(p_info);
// We want to know if compressed data, plus stub, plus a couple pages,
// will fit below the uncompressed program in memory. But we don't
// know the final total compressed size yet, so use the uncompressed
// size (total over all PT_LOAD32) as an upper bound.
unsigned len = 0;
unsigned lo_va_user = ~0u; // infinity
for (int j= e_phnum; --j>=0; ) {
if (PT_LOAD32 == get_te32(&phdri[j].p_type)) {
len += (unsigned)get_te32(&phdri[j].p_filesz);
unsigned const va = get_te32(&phdri[j].p_vaddr);
if (va < lo_va_user) {
lo_va_user = va;
}
}
}
lsize = /*getLoaderSize()*/ 64 * 1024; // XXX: upper bound; avoid circularity
unsigned lo_va_stub = get_te32(&elfout.phdr[0].p_vaddr);
unsigned adrc;
unsigned adrm;
unsigned adru;
unsigned adrx;
unsigned cntc;
unsigned lenm;
unsigned lenu;
len += (7&-lsize) + lsize;
bool const is_big = (lo_va_user < (lo_va_stub + len + 2*page_size));
if (is_big) {
set_te32( &elfout.ehdr.e_entry,
get_te32(&elfout.ehdr.e_entry) + lo_va_user - lo_va_stub);
set_te32(&elfout.phdr[0].p_vaddr, lo_va_user);
set_te32(&elfout.phdr[0].p_paddr, lo_va_user);
lo_va_stub = lo_va_user;
adrc = lo_va_stub;
adrm = getbrk(phdri, e_phnum);
adru = page_mask & (~page_mask + adrm); // round up to page boundary
adrx = adru + hlen;
lenm = page_size + len;
lenu = page_size + len;
cntc = len >> 3; // over-estimate; corrected at runtime
}
else {
adrm = lo_va_stub + len;
adrc = adrm;
adru = lo_va_stub;
adrx = lo_va_stub + hlen;
lenm = page_size;
lenu = page_size + len;
cntc = 0;
}
adrm = page_mask & (~page_mask + adrm); // round up to page boundary
adrc = page_mask & (~page_mask + adrc); // round up to page boundary
linker->defineSymbol("ADRX", adrx); // compressed input for eXpansion
// For actual moving, we need the true count, which depends on sz_pack2
// and is not yet known. So the runtime stub detects "no move"
// if adrm==adrc, and otherwise uses actual sz_pack2 to compute cntc.
//linker->defineSymbol("CNTC", cntc); // count for copy
linker->defineSymbol("ADRC", adrc); // addr for copy
linker->defineSymbol("LENU", lenu); // len for unmap
linker->defineSymbol("ADRU", adru); // addr for unmap
linker->defineSymbol("LENM", lenm); // len for map
linker->defineSymbol("ADRM", adrm); // addr for map
//linker->dumpSymbols(); // debug
}
void PackLinuxElf32::pack4(OutputFile *fo, Filter &ft)
{
overlay_offset = sz_elf_hdrs + sizeof(linfo);
unsigned const zero = 0;
unsigned len = fo->getBytesWritten();
fo->write(&zero, 3& -len); // align to 0 mod 4
len += 3& -len;
set_te32(&elfout.phdr[0].p_filesz, len);
super::pack4(fo, ft); // write PackHeader and overlay_offset
// Cannot pre-round .p_memsz. If .p_filesz < .p_memsz, then kernel
// tries to make .bss, which requires PF_W.
// But strict SELinux (or PaX, grSecurity) disallows PF_W with PF_X.
#if 0 /*{*/
// pre-calculate for benefit of runtime disappearing act via munmap()
set_te32(&elfout.phdr[0].p_memsz, page_mask & (~page_mask + len));
#else /*}{*/
set_te32(&elfout.phdr[0].p_memsz, len);
#endif /*}*/
// rewrite Elf header
if (Elf32_Ehdr::ET_DYN==get_te16(&ehdri.e_type)) {
unsigned const base= get_te32(&elfout.phdr[0].p_vaddr);
set_te16(&elfout.ehdr.e_type, Elf32_Ehdr::ET_DYN);
set_te16(&elfout.ehdr.e_phnum, 1);
set_te32( &elfout.ehdr.e_entry,
get_te32(&elfout.ehdr.e_entry) - base);
set_te32(&elfout.phdr[0].p_vaddr, get_te32(&elfout.phdr[0].p_vaddr) - base);
set_te32(&elfout.phdr[0].p_paddr, get_te32(&elfout.phdr[0].p_paddr) - base);
// Strict SELinux (or PaX, grSecurity) disallows PF_W with PF_X
//elfout.phdr[0].p_flags |= Elf32_Phdr::PF_W;
}
fo->seek(0, SEEK_SET);
if (0!=xct_off) { // shared library
ehdri.e_ident[12] = 0xcd; // INT 0x80 (syscall [munmap])
ehdri.e_ident[13] = 0x80;
ehdri.e_ident[14] = 0x61; // POPA
ehdri.e_ident[15] = 0xc3; // RET
if (Elf32_Ehdr::EM_ARM==e_machine) {
set_te16(&ehdri.e_ident[12], 0xdf00); // swi 0
set_te16(&ehdri.e_ident[14], 0xbdff); // pop {all regs}
}
fo->rewrite(&ehdri, sizeof(ehdri));
fo->rewrite(phdri, e_phnum * sizeof(*phdri));
}
else {
if (Elf32_Phdr::PT_NOTE==get_te32(&elfout.phdr[2].p_type)) {
unsigned const reloc = get_te32(&elfout.phdr[0].p_vaddr);
set_te32( &elfout.phdr[2].p_vaddr,
reloc + get_te32(&elfout.phdr[2].p_vaddr));
set_te32( &elfout.phdr[2].p_paddr,
reloc + get_te32(&elfout.phdr[2].p_paddr));
fo->rewrite(&elfout, sz_elf_hdrs);
fo->rewrite(&elfnote, sizeof(elfnote));
}
else {
fo->rewrite(&elfout, sz_elf_hdrs);
}
fo->rewrite(&linfo, sizeof(linfo));
}
}
void PackLinuxElf64::pack4(OutputFile *fo, Filter &ft)
{
overlay_offset = sz_elf_hdrs + sizeof(linfo);
unsigned const zero = 0;
unsigned len = fo->getBytesWritten();
fo->write(&zero, 3& -len); // align to 0 mod 4
len += 3& -len;
set_te64(&elfout.phdr[0].p_filesz, len);
super::pack4(fo, ft); // write PackHeader and overlay_offset
// Cannot pre-round .p_memsz. If .p_filesz < .p_memsz, then kernel
// tries to make .bss, which requires PF_W.
// But strict SELinux (or PaX, grSecurity) disallows PF_W with PF_X.
#if 0 /*{*/
// pre-calculate for benefit of runtime disappearing act via munmap()
set_te64(&elfout.phdr[0].p_memsz, page_mask & (~page_mask + len));
#else /*}{*/
set_te64(&elfout.phdr[0].p_memsz, len);
#endif /*}*/
// rewrite Elf header
if (Elf64_Ehdr::ET_DYN==get_te16(&ehdri.e_type)) {
acc_uint64l_t const base= get_te64(&elfout.phdr[0].p_vaddr);
set_te16(&elfout.ehdr.e_type, Elf64_Ehdr::ET_DYN);
set_te16(&elfout.ehdr.e_phnum, 1);
set_te64( &elfout.ehdr.e_entry,
get_te64(&elfout.ehdr.e_entry) - base);
set_te64(&elfout.phdr[0].p_vaddr, get_te64(&elfout.phdr[0].p_vaddr) - base);
set_te64(&elfout.phdr[0].p_paddr, get_te64(&elfout.phdr[0].p_paddr) - base);
// Strict SELinux (or PaX, grSecurity) disallows PF_W with PF_X
//elfout.phdr[0].p_flags |= Elf64_Phdr::PF_W;
}
fo->seek(0, SEEK_SET);
if (0!=xct_off) { // shared library
ehdri.e_ident[11] = 0x0f; // syscall [munmap]
ehdri.e_ident[12] = 0x05;
ehdri.e_ident[13] = 0x5f; // pop %rdi (arg1)
ehdri.e_ident[14] = 0x5e; // pop %rsi (arg2)
ehdri.e_ident[15] = 0xc3; // RET
fo->rewrite(&ehdri, sizeof(ehdri));
fo->rewrite(phdri, e_phnum * sizeof(*phdri));
}
else {
if (Elf64_Phdr::PT_NOTE==get_te64(&elfout.phdr[2].p_type)) {
acc_uint64l_t const reloc = get_te64(&elfout.phdr[0].p_vaddr);
set_te64( &elfout.phdr[2].p_vaddr,
reloc + get_te64(&elfout.phdr[2].p_vaddr));
set_te64( &elfout.phdr[2].p_paddr,
reloc + get_te64(&elfout.phdr[2].p_paddr));
fo->rewrite(&elfout, sz_elf_hdrs);
// FIXME fo->rewrite(&elfnote, sizeof(elfnote));
}
else {
fo->rewrite(&elfout, sz_elf_hdrs);
}
fo->rewrite(&linfo, sizeof(linfo));
}
}
void PackLinuxElf64::unpack(OutputFile *fo)
{
#define MAX_ELF_HDR 1024
union {
unsigned char buf[MAX_ELF_HDR];
//struct { Elf64_Ehdr ehdr; Elf64_Phdr phdr; } e;
} u;
Elf64_Ehdr *const ehdr = (Elf64_Ehdr *) u.buf;
Elf64_Phdr const *phdr = (Elf64_Phdr *) (u.buf + sizeof(*ehdr));
unsigned szb_info = sizeof(b_info);
{
fi->seek(0, SEEK_SET);
fi->readx(u.buf, MAX_ELF_HDR);
acc_uint64l_t const e_entry = get_te64(&ehdr->e_entry);
if (e_entry < 0x401180
&& ehdr->e_machine==Elf64_Ehdr::EM_386) { /* old style, 8-byte b_info */
szb_info = 2*sizeof(unsigned);
}
}
fi->seek(overlay_offset, SEEK_SET);
p_info hbuf;
fi->readx(&hbuf, sizeof(hbuf));
unsigned orig_file_size = get_te32(&hbuf.p_filesize);
blocksize = get_te32(&hbuf.p_blocksize);
if (file_size > (off_t)orig_file_size || blocksize > orig_file_size)
throwCantUnpack("file header corrupted");
ibuf.alloc(blocksize + OVERHEAD);
b_info bhdr; memset(&bhdr, 0, sizeof(bhdr));
fi->readx(&bhdr, szb_info);
ph.u_len = get_te32(&bhdr.sz_unc);
ph.c_len = get_te32(&bhdr.sz_cpr);
ph.filter_cto = bhdr.b_cto8;
// Uncompress Ehdr and Phdrs.
fi->readx(ibuf, ph.c_len);
decompress(ibuf, (upx_byte *)ehdr, false);
unsigned total_in = 0;
unsigned total_out = 0;
unsigned c_adler = upx_adler32(NULL, 0);
unsigned u_adler = upx_adler32(NULL, 0);
// decompress PT_LOAD32
bool first_PF_X = true;
unsigned const u_phnum = get_te16(&ehdr->e_phnum);
fi->seek(- (off_t) (szb_info + ph.c_len), SEEK_CUR);
for (unsigned j=0; j < u_phnum; ++phdr, ++j) {
if (PT_LOAD32==get_te32(&phdr->p_type)) {
acc_uint64l_t const filesz = get_te64(&phdr->p_filesz);
acc_uint64l_t const offset = get_te64(&phdr->p_offset);
if (fo)
fo->seek(offset, SEEK_SET);
if (Elf64_Phdr::PF_X & get_te32(&phdr->p_flags)) {
unpackExtent(filesz, fo, total_in, total_out,
c_adler, u_adler, first_PF_X, szb_info);
first_PF_X = false;
}
else {
unpackExtent(filesz, fo, total_in, total_out,
c_adler, u_adler, false, szb_info);
}
}
}
phdr = (Elf64_Phdr *) (u.buf + sizeof(*ehdr));
for (unsigned j = 0; j < u_phnum; ++j) {
unsigned const size = find_LOAD_gap(phdr, j, u_phnum);
if (size) {
unsigned const where = get_te64(&phdr[j].p_offset) +
get_te64(&phdr[j].p_filesz);
if (fo)
fo->seek(where, SEEK_SET);
unpackExtent(size, fo, total_in, total_out,
c_adler, u_adler, false, szb_info);
}
}
// check for end-of-file
fi->readx(&bhdr, szb_info);
unsigned const sz_unc = ph.u_len = get_te32(&bhdr.sz_unc);
if (sz_unc == 0) { // uncompressed size 0 -> EOF
// note: magic is always stored le32
unsigned const sz_cpr = get_le32(&bhdr.sz_cpr);
if (sz_cpr != UPX_MAGIC_LE32) // sz_cpr must be h->magic
throwCompressedDataViolation();
}
else { // extra bytes after end?
throwCompressedDataViolation();
}
// update header with totals
ph.c_len = total_in;
ph.u_len = total_out;
// all bytes must be written
if (total_out != orig_file_size)
throwEOFException();
// finally test the checksums
if (ph.c_adler != c_adler || ph.u_adler != u_adler)
throwChecksumError();
#undef MAX_ELF_HDR
}
/*************************************************************************
//
**************************************************************************/
PackLinuxElf32x86::PackLinuxElf32x86(InputFile *f) : super(f)
{
e_machine = Elf32_Ehdr::EM_386;
ei_class = Elf32_Ehdr::ELFCLASS32;
ei_data = Elf32_Ehdr::ELFDATA2LSB;
ei_osabi = Elf32_Ehdr::ELFOSABI_LINUX;
}
PackLinuxElf32x86::~PackLinuxElf32x86()
{
}
Linker* PackLinuxElf32x86::newLinker() const
{
return new ElfLinkerX86;
}
PackBSDElf32x86::PackBSDElf32x86(InputFile *f) : super(f)
{
e_machine = Elf32_Ehdr::EM_386;
ei_class = Elf32_Ehdr::ELFCLASS32;
ei_data = Elf32_Ehdr::ELFDATA2LSB;
}
PackBSDElf32x86::~PackBSDElf32x86()
{
}
PackFreeBSDElf32x86::PackFreeBSDElf32x86(InputFile *f) : super(f)
{
ei_osabi = Elf32_Ehdr::ELFOSABI_FREEBSD;
}
PackFreeBSDElf32x86::~PackFreeBSDElf32x86()
{
}
PackNetBSDElf32x86::PackNetBSDElf32x86(InputFile *f) : super(f)
{
ei_osabi = Elf32_Ehdr::ELFOSABI_NETBSD;
osabi_note = "NetBSD";
}
PackNetBSDElf32x86::~PackNetBSDElf32x86()
{
}
PackOpenBSDElf32x86::PackOpenBSDElf32x86(InputFile *f) : super(f)
{
ei_osabi = Elf32_Ehdr::ELFOSABI_OPENBSD;
osabi_note = "OpenBSD";
}
PackOpenBSDElf32x86::~PackOpenBSDElf32x86()
{
}
int const *
PackLinuxElf32x86::getFilters() const
{
static const int filters[] = {
0x49, 0x46,
// FIXME 2002-11-11: We use stub/fold_elf86.asm, which calls the
// decompressor multiple times, and unfilter is independent of decompress.
// Currently only filters 0x49, 0x46, 0x80..0x87 can handle this;
// and 0x80..0x87 are regarded as "untested".
#if 0
0x26, 0x24, 0x11, 0x14, 0x13, 0x16, 0x25, 0x15, 0x12,
#endif
#if 0
0x83, 0x36, 0x26,
0x86, 0x80,
0x84, 0x87, 0x81,
0x82, 0x85,
0x24, 0x16, 0x13, 0x14, 0x11, 0x25, 0x15, 0x12,
#endif
FT_END };
return filters;
}
PackLinuxElf32armLe::PackLinuxElf32armLe(InputFile *f) : super(f)
{
e_machine = Elf32_Ehdr::EM_ARM;
ei_class = Elf32_Ehdr::ELFCLASS32;
ei_data = Elf32_Ehdr::ELFDATA2LSB;
ei_osabi = Elf32_Ehdr::ELFOSABI_ARM;
}
PackLinuxElf32armLe::~PackLinuxElf32armLe()
{
}
PackLinuxElf32mipseb::PackLinuxElf32mipseb(InputFile *f) : super(f)
{
e_machine = Elf32_Ehdr::EM_MIPS;
ei_class = Elf32_Ehdr::ELFCLASS32;
ei_data = Elf32_Ehdr::ELFDATA2MSB;
ei_osabi = Elf32_Ehdr::ELFOSABI_LINUX;
}
PackLinuxElf32mipseb::~PackLinuxElf32mipseb()
{
}
PackLinuxElf32mipsel::PackLinuxElf32mipsel(InputFile *f) : super(f)
{
e_machine = Elf32_Ehdr::EM_MIPS;
ei_class = Elf32_Ehdr::ELFCLASS32;
ei_data = Elf32_Ehdr::ELFDATA2LSB;
ei_osabi = Elf32_Ehdr::ELFOSABI_LINUX;
}
PackLinuxElf32mipsel::~PackLinuxElf32mipsel()
{
}
Linker* PackLinuxElf32armLe::newLinker() const
{
return new ElfLinkerArmLE();
}
Linker* PackLinuxElf32mipseb::newLinker() const
{
return new ElfLinkerMipsBE();
}
Linker* PackLinuxElf32mipsel::newLinker() const
{
return new ElfLinkerMipsLE();
}
PackLinuxElf32armBe::PackLinuxElf32armBe(InputFile *f) : super(f)
{
e_machine = Elf32_Ehdr::EM_ARM;
ei_class = Elf32_Ehdr::ELFCLASS32;
ei_data = Elf32_Ehdr::ELFDATA2MSB;
ei_osabi = Elf32_Ehdr::ELFOSABI_ARM;
}
PackLinuxElf32armBe::~PackLinuxElf32armBe()
{
}
Linker* PackLinuxElf32armBe::newLinker() const
{
return new ElfLinkerArmBE();
}
unsigned
PackLinuxElf32::elf_get_offset_from_address(acc_uint64l_t const addr) const
{
Elf32_Phdr const *phdr = phdri;
int j = e_phnum;
for (; --j>=0; ++phdr) if (PT_LOAD32 == get_te32(&phdr->p_type)) {
unsigned const t = addr - get_te32(&phdr->p_vaddr);
if (t < get_te32(&phdr->p_filesz)) {
return t + get_te32(&phdr->p_offset);
}
}
return 0;
}
void const *
PackLinuxElf32::elf_find_dynamic(unsigned int const key) const
{
Elf32_Dyn const *dynp= dynseg;
if (dynp)
for (; Elf32_Dyn::DT_NULL!=dynp->d_tag; ++dynp) if (get_te32(&dynp->d_tag)==key) {
unsigned const t= elf_get_offset_from_address(get_te32(&dynp->d_val));
if (t) {
return t + file_image;
}
break;
}
return 0;
}
acc_uint64l_t
PackLinuxElf32::elf_unsigned_dynamic(unsigned int const key) const
{
Elf32_Dyn const *dynp= dynseg;
if (dynp)
for (; Elf32_Dyn::DT_NULL!=dynp->d_tag; ++dynp) if (get_te32(&dynp->d_tag)==key) {
return get_te32(&dynp->d_val);
}
return 0;
}
unsigned
PackLinuxElf64::elf_get_offset_from_address(acc_uint64l_t const addr) const
{
Elf64_Phdr const *phdr = phdri;
int j = e_phnum;
for (; --j>=0; ++phdr) if (PT_LOAD64 == get_te32(&phdr->p_type)) {
acc_uint64l_t const t = addr - get_te64(&phdr->p_vaddr);
if (t < get_te64(&phdr->p_filesz)) {
return t + get_te64(&phdr->p_offset);
}
}
return 0;
}
void const *
PackLinuxElf64::elf_find_dynamic(unsigned int const key) const
{
Elf64_Dyn const *dynp= dynseg;
if (dynp)
for (; Elf64_Dyn::DT_NULL!=dynp->d_tag; ++dynp) if (get_te64(&dynp->d_tag)==key) {
acc_uint64l_t const t= elf_get_offset_from_address(get_te64(&dynp->d_val));
if (t) {
return (size_t)t + file_image;
}
break;
}
return 0;
}
acc_uint64l_t
PackLinuxElf64::elf_unsigned_dynamic(unsigned int const key) const
{
Elf64_Dyn const *dynp= dynseg;
if (dynp)
for (; Elf64_Dyn::DT_NULL!=dynp->d_tag; ++dynp) if (get_te64(&dynp->d_tag)==key) {
return get_te64(&dynp->d_val);
}
return 0;
}
unsigned PackLinuxElf32::gnu_hash(char const *q)
{
unsigned char const *p = (unsigned char const *)q;
unsigned h;
for (h= 5381; 0!=*p; ++p) {
h += *p + (h << 5);
}
return h;
}
unsigned PackLinuxElf32::elf_hash(char const *p)
{
unsigned h;
for (h= 0; 0!=*p; ++p) {
h = *p + (h<<4);
{
unsigned const t = 0xf0000000u & h;
h &= ~t;
h ^= t>>24;
}
}
return h;
}
Elf32_Sym const *PackLinuxElf32::elf_lookup(char const *name) const
{
if (hashtab && dynsym && dynstr) {
unsigned const nbucket = get_te32(&hashtab[0]);
unsigned const *const buckets = &hashtab[2];
unsigned const *const chains = &buckets[nbucket];
unsigned const m = elf_hash(name) % nbucket;
unsigned si;
for (si= get_te32(&buckets[m]); 0!=si; si= get_te32(&chains[si])) {
char const *const p= get_te32(&dynsym[si].st_name) + dynstr;
if (0==strcmp(name, p)) {
return &dynsym[si];
}
}
}
if (gashtab && dynsym && dynstr) {
unsigned const n_bucket = get_te32(&gashtab[0]);
unsigned const symbias = get_te32(&gashtab[1]);
unsigned const n_bitmask = get_te32(&gashtab[2]);
unsigned const gnu_shift = get_te32(&gashtab[3]);
unsigned const *const bitmask = &gashtab[4];
unsigned const *const buckets = &bitmask[n_bitmask];
unsigned const h = gnu_hash(name);
unsigned const hbit1 = 037& h;
unsigned const hbit2 = 037& (h>>gnu_shift);
unsigned const w = get_te32(&bitmask[(n_bitmask -1) & (h>>5)]);
if (1& (w>>hbit1) & (w>>hbit2)) {
unsigned bucket = get_te32(&buckets[h % n_bucket]);
if (0!=bucket) {
Elf32_Sym const *dsp = dynsym;
unsigned const *const hasharr = &buckets[n_bucket];
unsigned const *hp = &hasharr[bucket - symbias];
dsp += bucket;
do if (0==((h ^ get_te32(hp))>>1)) {
char const *const p = get_te32(&dsp->st_name) + dynstr;
if (0==strcmp(name, p)) {
return dsp;
}
} while (++dsp, 0==(1u& get_te32(hp++)));
}
}
}
return 0;
}
void PackLinuxElf32::unpack(OutputFile *fo)
{
#define MAX_ELF_HDR 512
union {
unsigned char buf[MAX_ELF_HDR];
#if (ACC_CC_BORLANDC || ACC_CC_SUNPROC)
#else
struct { Elf32_Ehdr ehdr; Elf32_Phdr phdr; } e;
#endif
} u;
COMPILE_TIME_ASSERT(sizeof(u) == MAX_ELF_HDR)
Elf32_Ehdr *const ehdr = (Elf32_Ehdr *) u.buf;
Elf32_Phdr *phdr = (Elf32_Phdr *) (u.buf + sizeof(*ehdr));
unsigned old_data_off = 0;
unsigned old_data_len = 0;
unsigned old_dtinit = 0;
unsigned szb_info = sizeof(b_info);
{
fi->seek(0, SEEK_SET);
fi->readx(u.buf, MAX_ELF_HDR);
if (get_te32(&ehdr->e_entry) < 0x401180
&& Elf32_Ehdr::EM_386 ==get_te16(&ehdr->e_machine)
&& Elf32_Ehdr::ET_EXEC==get_te16(&ehdr->e_type)) {
// Beware ET_DYN.e_entry==0x10f0 (or so) does NOT qualify here.
/* old style, 8-byte b_info */
szb_info = 2*sizeof(unsigned);
}
}
old_dtinit = ehdr->e_shoff;
fi->seek(overlay_offset, SEEK_SET);
p_info hbuf;
fi->readx(&hbuf, sizeof(hbuf));
unsigned orig_file_size = get_te32(&hbuf.p_filesize);
blocksize = get_te32(&hbuf.p_blocksize);
if (file_size > (off_t)orig_file_size || blocksize > orig_file_size)
throwCantUnpack("file header corrupted");
ibuf.alloc(blocksize + OVERHEAD);
b_info bhdr; memset(&bhdr, 0, sizeof(bhdr));
fi->readx(&bhdr, szb_info);
ph.u_len = get_te32(&bhdr.sz_unc);
ph.c_len = get_te32(&bhdr.sz_cpr);
ph.filter_cto = bhdr.b_cto8;
bool const is_shlib = (ehdr->e_ident[12]==0xcd) // EM_386
|| (ehdr->e_ident[11]==0x0f) // EM_X86_64
|| (get_te16(&ehdr->e_ident[12])==0xdf00); // EM_ARM (thumb)
// Peek at resulting Ehdr and Phdrs for use in controlling unpacking.
// Uncompress an extra time, and don't verify or update checksums.
if (ibuf.getSize() < ph.c_len || sizeof(u) < ph.u_len)
throwCompressedDataViolation();
fi->readx(ibuf, ph.c_len);
decompress(ibuf, (upx_byte *)ehdr, false);
fi->seek(- (off_t) (szb_info + ph.c_len), SEEK_CUR);
unsigned const u_phnum = get_te16(&ehdr->e_phnum);
unsigned total_in = 0;
unsigned total_out = 0;
unsigned c_adler = upx_adler32(NULL, 0);
unsigned u_adler = upx_adler32(NULL, 0);
if (is_shlib) {
// Unpack and output the Ehdr and Phdrs for real.
// This depends on position within input file fi.
unpackExtent(ph.u_len, fo, total_in, total_out,
c_adler, u_adler, false, szb_info);
// The first PT_LOAD. Part is not compressed (for benefit of rtld.)
// Read enough to position the input for next unpackExtent.
fi->seek(0, SEEK_SET);
fi->readx(ibuf, overlay_offset + sizeof(hbuf) + szb_info + ph.c_len);
if (fo) {
fo->write(ibuf + ph.u_len, overlay_offset - ph.u_len);
}
// Search the Phdrs of compressed
int n_ptload = 0;
phdr = (Elf32_Phdr *) (void *) (1+ (Elf32_Ehdr *)(unsigned char *)ibuf);
for (unsigned j=0; j < u_phnum; ++phdr, ++j) {
if (PT_LOAD32==get_te32(&phdr->p_type) && 0!=n_ptload++) {
old_data_off = get_te32(&phdr->p_offset);
old_data_len = get_te32(&phdr->p_filesz);
break;
}
}
total_in = overlay_offset;
total_out = overlay_offset;
ph.u_len = 0;
// Decompress and unfilter the tail of first PT_LOAD.
phdr = (Elf32_Phdr *) (void *) (1+ ehdr);
for (unsigned j=0; j < u_phnum; ++phdr, ++j) {
if (PT_LOAD32==get_te32(&phdr->p_type)) {
ph.u_len = get_te32(&phdr->p_filesz) - overlay_offset;
break;
}
}
unpackExtent(ph.u_len, fo, total_in, total_out,
c_adler, u_adler, false, szb_info);
}
else { // main executable
// Decompress each PT_LOAD.
bool first_PF_X = true;
for (unsigned j=0; j < u_phnum; ++phdr, ++j) {
if (PT_LOAD32==get_te32(&phdr->p_type)) {
unsigned const filesz = get_te32(&phdr->p_filesz);
unsigned const offset = get_te32(&phdr->p_offset);
if (fo)
fo->seek(offset, SEEK_SET);
if (Elf32_Phdr::PF_X & get_te32(&phdr->p_flags)) {
unpackExtent(filesz, fo, total_in, total_out,
c_adler, u_adler, first_PF_X, szb_info);
first_PF_X = false;
}
else {
unpackExtent(filesz, fo, total_in, total_out,
c_adler, u_adler, false, szb_info);
}
}
}
}
// The gaps between PT_LOAD and after last PT_LOAD
phdr = (Elf32_Phdr *) (u.buf + sizeof(*ehdr));
for (unsigned j = 0; j < u_phnum; ++j) {
unsigned const size = find_LOAD_gap(phdr, j, u_phnum);
if (size) {
unsigned const where = get_te32(&phdr[j].p_offset) +
get_te32(&phdr[j].p_filesz);
if (fo)
fo->seek(where, SEEK_SET);
unpackExtent(size, fo, total_in, total_out,
c_adler, u_adler, false, szb_info);
}
}
// check for end-of-file
fi->readx(&bhdr, szb_info);
unsigned const sz_unc = ph.u_len = get_te32(&bhdr.sz_unc);
if (sz_unc == 0) { // uncompressed size 0 -> EOF
// note: magic is always stored le32
unsigned const sz_cpr = get_le32(&bhdr.sz_cpr);
if (sz_cpr != UPX_MAGIC_LE32) // sz_cpr must be h->magic
throwCompressedDataViolation();
}
else { // extra bytes after end?
throwCompressedDataViolation();
}
if (is_shlib) { // the non-first PT_LOAD
int n_ptload = 0;
unsigned load_off = 0;
phdr = (Elf32_Phdr *) (u.buf + sizeof(*ehdr));
for (unsigned j= 0; j < u_phnum; ++j, ++phdr) {
if (PT_LOAD32==get_te32(&phdr->p_type) && 0!=n_ptload++) {
load_off = get_te32(&phdr->p_offset);
fi->seek(old_data_off, SEEK_SET);
fi->readx(ibuf, old_data_len);
total_in += old_data_len;
total_out += old_data_len;
if (fo) {
fo->seek(get_te32(&phdr->p_offset), SEEK_SET);
fo->rewrite(ibuf, old_data_len);
}
}
}
// Restore DT_INIT.d_val
phdr = (Elf32_Phdr *) (u.buf + sizeof(*ehdr));
for (unsigned j= 0; j < u_phnum; ++j, ++phdr) {
if (phdr->PT_DYNAMIC==get_te32(&phdr->p_type)) {
unsigned const dyn_off = get_te32(&phdr->p_offset);
unsigned const dyn_len = get_te32(&phdr->p_filesz);
Elf32_Dyn *dyn = (Elf32_Dyn *)((unsigned char *)ibuf +
(dyn_off - load_off));
for (unsigned j2= 0; j2 < dyn_len; ++dyn, j2 += sizeof(*dyn)) {
if (dyn->DT_INIT==get_te32(&dyn->d_tag)) {
if (fo) {
fo->seek(sizeof(unsigned) + j2 + dyn_off, SEEK_SET);
fo->rewrite(&old_dtinit, sizeof(old_dtinit));
fo->seek(0, SEEK_END);
}
break;
}
}
}
}
}
// update header with totals
ph.c_len = total_in;
ph.u_len = total_out;
// all bytes must be written
if (total_out != orig_file_size)
throwEOFException();
// finally test the checksums
if (ph.c_adler != c_adler || ph.u_adler != u_adler)
throwChecksumError();
#undef MAX_ELF_HDR
}
void PackLinuxElf::unpack(OutputFile * /*fo*/)
{
throwCantUnpack("internal error");
}
/*
vi:ts=4:et
*/