1
0
mirror of https://github.com/upx/upx synced 2025-09-28 19:06:07 +08:00
upx/src/p_mach.cpp
John Reiser 473b90419f Mach-o for 'rust' has intermixed LC_SEGMENT64 "__DWARF" with 0==.vmsize
https://github.com/upx/upx/issues/222
	modified:   p_mach.cpp
	modified:   stub/src/amd64-darwin.macho-main.c
	modified:   stub/src/amd64-darwin.macho-upxmain.c
	also *-darwin.macho-fold.{h,map}
2018-10-13 21:06:37 -07:00

2500 lines
89 KiB
C++

/* p_mach.cpp -- pack Mach Object executable
This file is part of the UPX executable compressor.
Copyright (C) 2004-2018 John Reiser
All Rights Reserved.
UPX and the UCL library are free software; you can redistribute them
and/or modify them under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.
If not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
John Reiser
<jreiser@users.sourceforge.net>
*/
#include "conf.h"
#include "file.h"
#include "filter.h"
#include "linker.h"
#include "packer.h"
#include "p_mach.h"
#include "ui.h"
static const
#include "stub/i386-darwin.macho-entry.h"
static const
#include "stub/i386-darwin.macho-fold.h"
static const
#include "stub/i386-darwin.macho-upxmain.h"
static const
#include "stub/i386-darwin.dylib-entry.h"
static const
#include "stub/amd64-darwin.macho-entry.h"
static const
#include "stub/amd64-darwin.macho-fold.h"
static const
#include "stub/amd64-darwin.macho-upxmain.h"
static const
#include "stub/amd64-darwin.dylib-entry.h"
static const
#include "stub/arm.v5a-darwin.macho-entry.h"
static const
#include "stub/arm.v5a-darwin.macho-fold.h"
static const
#include "stub/arm64-darwin.macho-entry.h"
static const
#include "stub/arm64-darwin.macho-fold.h"
static const
#include "stub/powerpc-darwin.macho-entry.h"
static const
#include "stub/powerpc-darwin.macho-fold.h"
static const
#include "stub/powerpc-darwin.macho-upxmain.h"
static const
#include "stub/powerpc-darwin.dylib-entry.h"
static const
#include "stub/powerpc64le-darwin.macho-entry.h"
static const
#include "stub/powerpc64le-darwin.macho-fold.h"
static const
#include "stub/powerpc64le-darwin.dylib-entry.h"
// Packing a Darwin (Mach-o) Mac OS X dylib (dynamic shared library)
// is restricted. UPX gets control as the -init function, at the very
// end of processing by dyld. Relocation, loading of dependent libraries,
// etc., already have taken place before decompression. So the Mach-o
// headers, the __IMPORT segment, the __LINKEDIT segment, anything
// that is modifed by relocation, etc., cannot be compressed.
// We simplify arbitrarily by compressing only the __TEXT segment,
// which must be the first segment.
static const unsigned lc_segment[2] = {
0x1, 0x19
//Mach_command::LC_SEGMENT,
//Mach_command::LC_SEGMENT_64
};
#if 0 // NOT USED
static const unsigned lc_routines[2] = {
0x11, 0x1a
//Mach_command::LC_ROUTINES,
//Mach_command::LC_ROUTINES_64
};
#endif
template <class T>
PackMachBase<T>::PackMachBase(InputFile *f, unsigned cputype, unsigned filetype,
unsigned flavor, unsigned count, unsigned size) :
super(f), my_cputype(cputype), my_filetype(filetype), my_thread_flavor(flavor),
my_thread_state_word_count(count), my_thread_command_size(size),
n_segment(0), rawmseg(NULL), msegcmd(NULL), o__mod_init_func(0),
prev_mod_init_func(0), pagezero_vmsize(0)
{
MachClass::compileTimeAssertions();
bele = N_BELE_CTP::getRTP((const BeLePolicy*) NULL);
memset(&cmdUUID, 0, sizeof(cmdUUID));
memset(&cmdSRCVER, 0, sizeof(cmdSRCVER));
memset(&cmdVERMIN, 0, sizeof(cmdVERMIN));
memset(&linkitem, 0, sizeof(linkitem));
}
template <class T>
PackMachBase<T>::~PackMachBase()
{
delete [] rawmseg;
delete [] msegcmd;
}
PackDylibI386::PackDylibI386(InputFile *f) : super(f)
{
my_filetype = Mach_header::MH_DYLIB;
}
PackDylibAMD64::PackDylibAMD64(InputFile *f) : super(f)
{
my_filetype = Mach_header::MH_DYLIB;
}
PackDylibPPC32::PackDylibPPC32(InputFile *f) : super(f)
{
my_filetype = Mach_header::MH_DYLIB;
}
PackDylibPPC64LE::PackDylibPPC64LE(InputFile *f) : super(f)
{
my_filetype = Mach_header::MH_DYLIB;
}
template <class T>
const int *PackMachBase<T>::getCompressionMethods(int method, int level) const
{
// There really is no LE bias.
return Packer::getDefaultCompressionMethods_le32(method, level);
}
const int *PackMachARMEL::getCompressionMethods(int method, int level) const
{
// Un-aligned fetch does not work on 32-bit ARM, so use 8-bit methods
return Packer::getDefaultCompressionMethods_8(method, level);
}
PackMachPPC32::PackMachPPC32(InputFile *f) : super(f, Mach_header::CPU_TYPE_POWERPC,
Mach_header::MH_EXECUTE, Mach_thread_command::PPC_THREAD_STATE,
sizeof(Mach_ppc_thread_state)>>2, sizeof(threado))
{ }
PackMachPPC64LE::PackMachPPC64LE(InputFile *f) : super(f, Mach_header::CPU_TYPE_POWERPC64LE,
Mach_header::MH_EXECUTE, Mach_thread_command::PPC_THREAD_STATE64,
sizeof(Mach_ppcle_thread_state64)>>2, sizeof(threado))
{ }
const int *PackMachPPC32::getFilters() const
{
static const int filters[] = { 0xd0, FT_END };
return filters;
}
const int *PackMachPPC64LE::getFilters() const
{
static const int filters[] = { 0xd0, FT_END };
return filters;
}
PackMachI386::PackMachI386(InputFile *f) : super(f, Mach_header::CPU_TYPE_I386,
Mach_header::MH_EXECUTE, (unsigned)Mach_thread_command::x86_THREAD_STATE32,
sizeof(Mach_i386_thread_state)>>2, sizeof(threado))
{ }
int const *PackMachI386::getFilters() const
{
static const int filters[] = { 0x49, FT_END };
return filters;
}
PackMachAMD64::PackMachAMD64(InputFile *f) : super(f, Mach_header::CPU_TYPE_X86_64,
Mach_header::MH_EXECUTE, (unsigned)Mach_thread_command::x86_THREAD_STATE64,
sizeof(Mach_AMD64_thread_state)>>2, sizeof(threado))
{ }
int const *PackMachAMD64::getFilters() const
{
static const int filters[] = { 0x49, FT_END };
return filters;
}
PackMachARMEL::PackMachARMEL(InputFile *f) : super(f, Mach_header::CPU_TYPE_ARM,
Mach_header::MH_EXECUTE, (unsigned)Mach_thread_command::ARM_THREAD_STATE,
sizeof(Mach_ARM_thread_state)>>2, sizeof(threado))
{ }
PackMachARM64EL::PackMachARM64EL(InputFile *f) : super(f, Mach_header::CPU_TYPE_ARM64,
Mach_header::MH_EXECUTE, (unsigned)Mach_thread_command::ARM_THREAD_STATE,
sizeof(Mach_ARM64_thread_state)>>2, sizeof(threado))
{ }
int const *PackMachARMEL::getFilters() const
{
static const int filters[] = { 0x50, FT_END };
return filters;
}
int const *PackMachARM64EL::getFilters() const
{
static const int filters[] = { 0x52, FT_END };
return filters;
}
Linker *PackMachPPC32::newLinker() const
{
return new ElfLinkerPpc32;
}
Linker *PackMachPPC64LE::newLinker() const
{
return new ElfLinkerPpc64le;
}
Linker *PackMachI386::newLinker() const
{
return new ElfLinkerX86;
}
Linker *PackMachAMD64::newLinker() const
{
return new ElfLinkerAMD64;
}
Linker *PackMachARMEL::newLinker() const
{
return new ElfLinkerArmLE;
}
Linker *PackMachARM64EL::newLinker() const
{
return new ElfLinkerArm64LE;
}
template <class T>
void
PackMachBase<T>::addStubEntrySections(Filter const *)
{
addLoader("MACOS000", NULL);
//addLoader(getDecompressorSections(), NULL);
addLoader(
( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL"
: M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL"
: M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL"
: M_IS_LZMA(ph.method) ? "LZMA_ELF00,LZMA_DEC20,LZMA_DEC30"
: NULL), NULL);
if (hasLoaderSection("CFLUSH"))
addLoader("CFLUSH");
addLoader("ELFMAINY,IDENTSTR,+40,ELFMAINZ,FOLDEXEC", NULL);
}
void PackMachI386::addStubEntrySections(Filter const *ft)
{
int const n_mru = ft->n_mru; // FIXME: belongs to filter? packerf?
if (Mach_header::MH_EXECUTE == my_filetype) {
addLoader("I386BXX0", NULL); // .word offset to f_exp
}
else {
addLoader("LEXEC000", NULL); // entry to stub
}
if (ft->id) { // decompr, unfilter are separate
if (Mach_header::MH_EXECUTE != my_filetype) {
addLoader("LXUNF000", NULL); // 2-byte jump to f_exp
}
addLoader("LXUNF002", NULL); // entry to f_unf
// prolog to f_unf
if (0x80==(ft->id & 0xF0)) {
if (256==n_mru) {
addLoader("MRUBYTE0", NULL);
}
else if (n_mru) {
addLoader("LXMRU005", NULL);
}
if (n_mru) {
addLoader("LXMRU006", NULL);
}
else {
addLoader("LXMRU007", NULL);
}
}
else {
if (0x40==(ft->id & 0xF0)) {
addLoader("LXUNF008", NULL);
}
}
if (Mach_header::MH_EXECUTE == my_filetype) {
addFilter32(ft->id); // f_unf body
if (0x80==(ft->id & 0xF0)) {
if (0==n_mru) {
addLoader("LXMRU058", NULL);
}
}
addLoader("LXUNF035", NULL); // epilog to f_unf
}
else { // MH_DYLIB
addLoader("LXUNF010", NULL); // jmp32 lxunf0 # to rest of f_unf
if (n_mru) {
addLoader("LEXEC009", NULL); // empty (unify source with other cases)
}
}
}
if (Mach_header::MH_EXECUTE == my_filetype) {
addLoader("I386BXX1", NULL);
}
addLoader("LEXEC010", NULL); // prolog to f_exp
addLoader(getDecompressorSections(), NULL);
addLoader("LEXEC015", NULL); // epilog to f_exp
if (ft->id) {
if (Mach_header::MH_EXECUTE != my_filetype) {
if (0x80!=(ft->id & 0xF0)) {
addLoader("LXUNF042", NULL); // lxunf0:
}
addFilter32(ft->id); // body of f_unf
if (0x80==(ft->id & 0xF0)) {
if (0==n_mru) {
addLoader("LXMRU058", NULL);
}
}
addLoader("LXUNF035", NULL); // epilog to f_unf
}
}
else {
addLoader("LEXEC017", NULL); // epilog to f_exp
}
addLoader("IDENTSTR", NULL);
addLoader("LEXEC020", NULL);
addLoader("FOLDEXEC", NULL);
}
void PackMachAMD64::addStubEntrySections(Filter const * /*ft*/)
{
addLoader("MACHMAINX", NULL); // different for MY_DYLIB vs MH_EXECUTE
if (my_filetype==Mach_header::MH_EXECUTE) {
addLoader("MACH_UNC", NULL);
}
//addLoader(getDecompressorSections(), NULL);
addLoader(
( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL"
: M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL"
: M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL"
: M_IS_LZMA(ph.method) ? "LZMA_ELF00,LZMA_DEC20,LZMA_DEC30"
: NULL), NULL);
if (hasLoaderSection("CFLUSH"))
addLoader("CFLUSH");
addLoader("MACHMAINY,IDENTSTR,+40,MACHMAINZ,FOLDEXEC", NULL);
}
void PackMachPPC32::addStubEntrySections(Filter const * /*ft*/)
{
if (my_filetype!=Mach_header::MH_EXECUTE) {
addLoader("MACHMAINX", NULL);
}
else {
addLoader("PPC32BXX", NULL);
}
addLoader("MACH_UNC", NULL);
//addLoader(getDecompressorSections(), NULL);
addLoader(
( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL"
: M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL"
: M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL"
: M_IS_LZMA(ph.method) ? "LZMA_ELF00,LZMA_DEC20,LZMA_DEC30"
: NULL), NULL);
if (hasLoaderSection("CFLUSH"))
addLoader("CFLUSH");
addLoader("MACHMAINY,IDENTSTR,+40,MACHMAINZ", NULL);
if (my_filetype!=Mach_header::MH_EXECUTE) {
addLoader("FOLDEXEC", NULL);
}
}
void PackMachARMEL::addStubEntrySections(Filter const * /*ft*/)
{
addLoader("MACHMAINX", NULL);
//addLoader(getDecompressorSections(), NULL);
addLoader(
( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL"
: M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL"
: M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL"
: M_IS_LZMA(ph.method) ? "LZMA_ELF00,LZMA_DEC20,LZMA_DEC30"
: NULL), NULL);
if (hasLoaderSection("CFLUSH"))
addLoader("CFLUSH");
addLoader("MACHMAINY,IDENTSTR,+40,MACHMAINZ,FOLDEXEC", NULL);
}
void PackMachARM64EL::addStubEntrySections(Filter const * /*ft*/)
{
addLoader("MACHMAINX", NULL);
//addLoader(getDecompressorSections(), NULL);
addLoader(
( M_IS_NRV2E(ph.method) ? "NRV_HEAD,NRV2E,NRV_TAIL"
: M_IS_NRV2D(ph.method) ? "NRV_HEAD,NRV2D,NRV_TAIL"
: M_IS_NRV2B(ph.method) ? "NRV_HEAD,NRV2B,NRV_TAIL"
: M_IS_LZMA(ph.method) ? "LZMA_ELF00,LZMA_DEC20,LZMA_DEC30"
: NULL), NULL);
if (hasLoaderSection("CFLUSH"))
addLoader("CFLUSH");
addLoader("MACHMAINY,IDENTSTR,+40,MACHMAINZ,FOLDEXEC", NULL);
}
template <class T>
void PackMachBase<T>::defineSymbols(Filter const *)
{
// empty
}
template <class T>
void
PackMachBase<T>::buildMachLoader(
upx_byte const *const proto,
unsigned const szproto,
upx_byte const *const fold,
unsigned const szfold,
Filter const *ft
)
{
initLoader(proto, szproto);
struct b_info h; memset(&h, 0, sizeof(h));
unsigned fold_hdrlen = 0;
if (0 < szfold) {
h.sz_unc = (szfold < fold_hdrlen) ? 0 : (szfold - fold_hdrlen);
h.b_method = (unsigned char) ph.method;
h.b_ftid = (unsigned char) ph.filter;
h.b_cto8 = (unsigned char) ph.filter_cto;
}
unsigned char const *const uncLoader = fold_hdrlen + fold;
unsigned char *const cprLoader = New(unsigned char, sizeof(h) + h.sz_unc);
if (0 < szfold) {
unsigned sz_cpr = 0;
int r = upx_compress(uncLoader, h.sz_unc, sizeof(h) + cprLoader, &sz_cpr,
NULL, ph.method, 10, NULL, NULL );
h.sz_cpr = sz_cpr;
if (r != UPX_E_OK || h.sz_cpr >= h.sz_unc)
throwInternalError("loader compression failed");
}
memcpy(cprLoader, &h, sizeof(h));
// This adds the definition to the "library", to be used later.
linker->addSection("FOLDEXEC", cprLoader, sizeof(h) + h.sz_cpr, 0);
delete [] cprLoader;
int const GAP = 128; // must match stub/l_mac_ppc.S
int const NO_LAP = 64; // must match stub/src/*darwin*.S
segTEXT.vmsize = h.sz_unc - h.sz_cpr + GAP + NO_LAP;
addStubEntrySections(ft);
defineSymbols(ft);
relocateLoader();
}
template <class T>
void
PackMachBase<T>::buildLoader(const Filter *ft)
{
buildMachLoader(
stub_entry, sz_stub_entry,
stub_fold, sz_stub_fold, ft );
}
template <class T>
void PackMachBase<T>::patchLoader() { }
template <class T>
void PackMachBase<T>::updateLoader(OutputFile *) {}
template <class T>
void PackMachBase<T>::patchLoaderChecksum()
{
unsigned char *const ptr = getLoader();
l_info *const lp = &linfo;
// checksum for loader; also some PackHeader info
lp->l_checksum = 0;
lp->l_magic = UPX_MAGIC_LE32; // LE32 always
set_te16(&lp->l_lsize, (upx_uint16_t) lsize);
lp->l_version = (unsigned char) ph.version;
lp->l_format = (unsigned char) ph.format;
// INFO: lp->l_checksum is currently unused
set_te32(&lp->l_checksum, upx_adler32(ptr, lsize));
}
template <class T>
int __acc_cdecl_qsort
PackMachBase<T>::compare_segment_command(void const *const aa, void const *const bb)
{
Mach_segment_command const *const a = (Mach_segment_command const *)aa;
Mach_segment_command const *const b = (Mach_segment_command const *)bb;
unsigned const lc_seg = lc_segment[sizeof(Addr)>>3];
unsigned const xa = a->cmd - lc_seg;
unsigned const xb = b->cmd - lc_seg;
if (xa < xb) return -1; // LC_SEGMENT first
if (xa > xb) return 1;
if (0 != xa) return 0; // not LC_SEGMENT
// Ascending by .fileoff so that find_SEGMENT_gap works
if (a->fileoff < b->fileoff)
return -1;
if (a->fileoff > b->fileoff)
return 1;
// Ascending by .vmaddr
if (a->vmaddr < b->vmaddr) return -1;
if (a->vmaddr > b->vmaddr) return 1;
// Descending by .vmsize
if (a->vmsize) return -1; // 'a' is first
if (b->vmsize) return 1; // 'a' is last
// What could remain?
return 0;
}
#undef PAGE_MASK
#undef PAGE_SIZE
#define PAGE_MASK (~0u<<12)
#define PAGE_SIZE (0u-PAGE_MASK)
#undef PAGE_MASK64
#undef PAGE_SIZE64
#define PAGE_MASK64 (~(upx_uint64_t)0<<16)
#define PAGE_SIZE64 ((upx_uint64_t)0-PAGE_MASK64)
// At 2013-02-03 part of the source for codesign was
// http://opensource.apple.com/source/cctools/cctools-836/libstuff/ofile.c
#undef PAGE_MASK64
#undef PAGE_SIZE64
#define PAGE_MASK64 (~(upx_uint64_t)0<<12)
#define PAGE_SIZE64 ((upx_uint64_t)0-PAGE_MASK64)
unsigned const blankLINK = 16; // size of our empty __LINK segment
// Note: "readelf --segments" ==> "otool -hl" or "otool -hlv" etc. (Xcode on MacOS)
template <class T>
void PackMachBase<T>::pack4(OutputFile *fo, Filter &ft) // append PackHeader
{
// offset of p_info in compressed file
overlay_offset = secTEXT.offset + sizeof(linfo);
super::pack4(fo, ft);
if (Mach_header::MH_EXECUTE == my_filetype) {
unsigned len = fo->getBytesWritten();
char page[~PAGE_MASK]; memset(page, 0, sizeof(page));
fo->write(page, ~PAGE_MASK & (0u - len));
len += ~PAGE_MASK & (0u - len) ;
segTEXT.filesize = len;
segTEXT.vmsize = len; // FIXME? utilize GAP + NO_LAP + sz_unc - sz_cpr
secTEXT.offset = overlay_offset - sizeof(linfo);
secTEXT.addr = segTEXT.vmaddr + secTEXT.offset;
secTEXT.size = segTEXT.filesize - secTEXT.offset;
secXHDR.offset = overlay_offset - sizeof(linfo);
if (my_filetype==Mach_header::MH_EXECUTE) {
secXHDR.offset -= sizeof(linkitem);
}
secXHDR.addr += secXHDR.offset;
unsigned offLINK = segLINK.fileoff;
segLINK.fileoff = len; // must be in the file
segLINK.vmaddr = len + segTEXT.vmaddr;
fo->write(page, blankLINK); len += blankLINK;
segLINK.vmsize = PAGE_SIZE;
segLINK.filesize = blankLINK;
// Get a writeable copy of the stub to make editing easier.
ByteArray(upxstub, sz_stub_main);
memcpy(upxstub, stub_main, sz_stub_main);
Mach_header *const mhp = (Mach_header *)upxstub;
mhp->cpusubtype = my_cpusubtype;
mhp->flags = mhdro.flags;
char *tail = (char *)(1+ mhp);
Mach_section_command *sectxt = 0; // in temp for output
unsigned txt_addr = 0;
char *const lcp_end = mhdro.sizeofcmds + tail;
Mach_command *lcp = (Mach_command *)(1+ mhp);
Mach_command *lcp_next;
unsigned const ncmds = mhdro.ncmds;
//unsigned cmdsize = mhdro.sizeofcmds;
unsigned delta = 0;
for (unsigned j = 0; j < ncmds; ++j) {
unsigned skip = 0;
unsigned sz_cmd = lcp->cmdsize;
lcp_next = (Mach_command *)(sz_cmd + (char *)lcp);
switch (lcp->cmd) {
case Mach_command::LC_SEGMENT: // fall through
case Mach_command::LC_SEGMENT_64: {
Mach_segment_command *const segptr = (Mach_segment_command *)lcp;
if (!strcmp("__PAGEZERO", segptr->segname)) {
segptr->vmsize = pagezero_vmsize;
}
if (!strcmp("__TEXT", segptr->segname)) {
sectxt = (Mach_section_command *)(1+ segptr);
txt_addr = sectxt->addr;
sz_cmd = (segTEXT.nsects * sizeof(secTEXT)) + sizeof(segTEXT);
memcpy(tail, &segTEXT, sz_cmd); tail += sz_cmd;
goto next;
}
if (!strcmp("__LINKEDIT", segptr->segname)) {
segLINK.initprot = Mach_command::VM_PROT_READ;
delta = offLINK - segptr->fileoff; // relocation constant
sz_cmd = sizeof(segLINK);
memcpy(tail, &segLINK, sz_cmd); tail += sz_cmd;
goto next;
}
} break;
case Mach_command::LC_DYLD_INFO_ONLY: {
Mach_dyld_info_only_command *p = (Mach_dyld_info_only_command *)lcp;
if (p->rebase_off) p->rebase_off += delta;
if (p->bind_off) p->bind_off += delta;
if (p->lazy_bind_off) p->lazy_bind_off += delta;
if (p->export_off) p->export_off += delta;
// But we don't want any exported symbols.
p->export_off = 0;
p->export_size = 0;
skip = 1;
} break;
case Mach_command::LC_SYMTAB: {
// Apple codesign requires that string table is last in the file.
Mach_symtab_command *p = (Mach_symtab_command *)lcp;
p->symoff = segLINK.filesize + segLINK.fileoff;
p->nsyms = 0;
p->stroff = segLINK.fileoff;
p->strsize = segLINK.filesize;
skip = 1;
} break;
case Mach_command::LC_DYSYMTAB: {
Mach_dysymtab_command *p = (Mach_dysymtab_command *)lcp;
if (p->tocoff) p->tocoff += delta;
if (p->modtaboff) p->modtaboff += delta;
if (p->extrefsymoff) p->extrefsymoff += delta;
if (p->indirectsymoff) p->indirectsymoff += delta;
if (p->extreloff) p->extreloff += delta;
if (p->locreloff) p->locreloff += delta;
// But we don't want any symbols.
p->ilocalsym = 0;
p->nlocalsym = 0;
p->iextdefsym = 0;
p->nextdefsym = 0;
p->iundefsym = 0;
p->nundefsym = 0;
skip = 1;
} break;
case Mach_command::LC_MAIN: {
// Replace later with LC_UNIXTHREAD.
// LC_MAIN requires libSystem.B.dylib to provide the environment for main(), and CALLs the entryoff.
// LC_UNIXTHREAD does not need libSystem.B.dylib, and JMPs to the .rip with %rsp/argc and argv= 8+%rsp
threado_setPC(segTEXT.vmaddr +
(((Mach_main_command const *)lcp)->entryoff - segTEXT.fileoff));
skip = 1;
} break;
case Mach_command::LC_UNIXTHREAD: { // pre-LC_MAIN
threado_setPC(secTEXT.addr +
(threadc_getPC(lcp) - txt_addr));
skip = 1;
} break;
case Mach_command::LC_LOAD_DYLIB: {
skip = 1;
} break;
case Mach_command::LC_FUNCTION_STARTS:
case Mach_command::LC_DATA_IN_CODE: {
Mach_linkedit_data_command *p = (Mach_linkedit_data_command *)lcp;
if (p->dataoff) p->dataoff += delta;
skip = 1;
} break;
case Mach_command::LC_LOAD_DYLINKER: {
skip = 1;
} break;
case Mach_command::LC_SOURCE_VERSION: { // copy from saved original
memcpy(lcp, &cmdSRCVER, sizeof(cmdSRCVER));
if (Mach_command::LC_SOURCE_VERSION != cmdSRCVER.cmd) {
skip = 1; // was not seen
}
} break;
case Mach_command::LC_VERSION_MIN_MACOSX: { // copy from saved original
memcpy(lcp, &cmdVERMIN, sizeof(cmdVERMIN));
if (Mach_command::LC_VERSION_MIN_MACOSX != cmdVERMIN.cmd) {
skip = 1; // was not seen
}
} break;
} // end switch
if (skip) {
mhp->ncmds -= 1;
mhp->sizeofcmds -= sz_cmd;
}
else {
if (tail != (char *)lcp) {
memmove(tail, lcp, sz_cmd);
}
tail += sz_cmd;
}
next:
lcp = lcp_next;
} // end for each Mach_command
// Append LC_UNIXTHREAD
unsigned const sz_threado = threado_size();
mhp->ncmds += 1;
mhp->sizeofcmds += sz_threado;
fo->seek(0, SEEK_SET);
fo->rewrite(mhp, tail - (char *)mhp);
threado_rewrite(fo);
tail += sz_threado;
//
// Zero any remaining tail.
if (tail < lcp_end) {
unsigned sz_cmd = lcp_end - tail;
memset(tail, 0, sz_cmd);
fo->rewrite(tail, sz_cmd);
}
// Rewrite linfo in file.
fo->seek(sz_mach_headers, SEEK_SET);
fo->rewrite(&linfo, sizeof(linfo));
fo->seek(0, SEEK_END);
}
}
// At 2013-02-03 part of the source for codesign was:
// http://opensource.apple.com/source/cctools/cctools-836/libstuff/ofile.c
template <class T>
void PackMachBase<T>::pack4dylib( // append PackHeader
OutputFile *const fo,
Filter &ft,
Addr init_address
)
{
fo->seek(0, SEEK_SET);
fo->rewrite(&mhdro, sizeof(mhdro)); // segTEXT.nsect=1 (only secTEXT)
fo->rewrite(&segTEXT, sizeof(segTEXT)); // .vmsize
unsigned opos = sizeof(mhdro);
// Append each non-__TEXT segment, page aligned.
int slide = 0;
unsigned o_end_txt = 0;
unsigned hdrpos = sizeof(mhdro);
Mach_segment_command const *seg = rawmseg;
Mach_segment_command const *const endseg =
(Mach_segment_command const *)(mhdri.sizeofcmds + (char const *)seg);
for ( ; seg < endseg; seg = (Mach_segment_command const *)(
seg->cmdsize + (char const *)seg )
) switch (seg->cmd & ~Mach_command::LC_REQ_DYLD) {
default: // unknown if any file offset field must slide
fprintf(stderr, "Unrecognized Macho cmd offset=0x%lx cmd=0x%lx size=0x%lx\n",
(unsigned long)((const char *)seg - (const char *)rawmseg),
(unsigned long)seg->cmd, (unsigned long)seg->cmdsize);
// fall through
case Mach_command::LC_VERSION_MIN_MACOSX:
case Mach_command::LC_SOURCE_VERSION:
case Mach_command::LC_THREAD:
case Mach_command::LC_UNIXTHREAD:
case Mach_command::LC_LOAD_DYLIB:
case Mach_command::LC_ID_DYLIB:
case Mach_command::LC_LOAD_DYLINKER:
case Mach_command::LC_UUID:
case Mach_command::LC_RPATH:
case Mach_command::LC_REEXPORT_DYLIB: { // contain no file offset fields
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(seg, seg->cmdsize);
hdrpos += seg->cmdsize;
} break;
case Mach_command::LC_CODE_SIGNATURE:
case Mach_command::LC_SEGMENT_SPLIT_INFO:
case Mach_command::LC_DYLIB_CODE_SIGN_DRS:
case Mach_command::LC_DATA_IN_CODE:
case Mach_command::LC_FUNCTION_STARTS: {
Mach_linkedit_data_command cmd; memcpy(&cmd, seg, sizeof(cmd));
if (o_end_txt <= cmd.dataoff) { cmd.dataoff += slide; }
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(&cmd, sizeof(cmd));
hdrpos += sizeof(cmd);
} break;
case Mach_command::LC_DYLD_INFO_ONLY & ~Mach_command::LC_REQ_DYLD: {
Mach_dyld_info_only_command cmd; memcpy(&cmd, seg, sizeof(cmd));
if (o_end_txt <= cmd.rebase_off) { cmd.rebase_off += slide; }
if (o_end_txt <= cmd.bind_off) { cmd.bind_off += slide; }
if (o_end_txt <= cmd.weak_bind_off) { cmd.weak_bind_off += slide; }
if (o_end_txt <= cmd.lazy_bind_off) { cmd.lazy_bind_off += slide; }
if (o_end_txt <= cmd.export_off) { cmd.export_off += slide; }
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(&cmd, sizeof(cmd));
hdrpos += sizeof(cmd);
} break;
case Mach_command::LC_TWOLEVEL_HINTS: {
Mach_twolevel_hints_command cmd; memcpy(&cmd, seg, sizeof(cmd));
if (o_end_txt <= cmd.offset) { cmd.offset += slide; }
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(&cmd, sizeof(cmd));
hdrpos += sizeof(cmd);
} break;
case Mach_command::LC_ROUTINES_64:
case Mach_command::LC_ROUTINES: {
Mach_routines_command cmd; memcpy(&cmd, seg, sizeof(cmd));
cmd.reserved1 = cmd.init_address;
cmd.init_address = init_address;
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(&cmd, sizeof(cmd));
hdrpos += sizeof(cmd);
} break;
case Mach_command::LC_SEGMENT_64:
case Mach_command::LC_SEGMENT: {
// non-__TEXT might be observed and relocated by dyld before us.
Mach_segment_command segcmdtmp = *seg;
bool const is_text = 0==strncmp(&seg->segname[0], "__TEXT", 1+ 6);
{
if (is_text) {
slide = 0;
segTEXT.vmsize = segTEXT.filesize = fo->getBytesWritten();
segTEXT.maxprot |= Mach_command::VM_PROT_WRITE;
segcmdtmp = segTEXT;
opos = o_end_txt = segcmdtmp.filesize + segcmdtmp.fileoff;
}
else {
opos += ~PAGE_MASK & (0u - opos); // advance to PAGE_SIZE boundary
slide = opos - segcmdtmp.fileoff;
segcmdtmp.fileoff = opos;
}
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(&segcmdtmp, sizeof(segcmdtmp));
hdrpos += sizeof(segcmdtmp);
// Update the sections.
Mach_section_command const *secp =
(Mach_section_command const *)(const void*)(const char*)(1+ seg);
if (is_text) {
secTEXT.offset = secp->offset;
secTEXT.addr = segTEXT.vmaddr + secTEXT.offset;
secTEXT.size = segTEXT.filesize - secTEXT.offset;
secp = &secTEXT;
}
unsigned const nsects = (is_text ? 1 : segcmdtmp.nsects);
Mach_section_command seccmdtmp;
for (unsigned j = 0; j < nsects; ++secp, ++j) {
seccmdtmp = *secp;
if (o_end_txt <= seccmdtmp.offset) { seccmdtmp.offset += slide; }
if (o_end_txt <= seccmdtmp.reloff) { seccmdtmp.reloff += slide; }
fo->rewrite(&seccmdtmp, sizeof(seccmdtmp));
hdrpos += sizeof(seccmdtmp);
}
if (!is_text) {
unsigned const len = seg->filesize;
MemBuffer data(len);
fi->seek(seg->fileoff, SEEK_SET);
fi->readx(data, len);
unsigned const pos = o__mod_init_func - seg->fileoff;
if (pos < seg->filesize) {
if (*(unsigned *)(pos + data) != (unsigned)prev_mod_init_func) {
throwCantPack("__mod_init_func inconsistent");
}
*(unsigned *)(pos + data) = (unsigned)entryVMA;
}
fo->seek(opos, SEEK_SET);
fo->write(data, len);
opos += len;
}
}
} break;
case Mach_command::LC_SYMTAB: {
Mach_symtab_command cmd; memcpy(&cmd, seg, sizeof(cmd));
if (o_end_txt <= cmd.symoff) { cmd.symoff += slide; }
if (o_end_txt <= cmd.stroff) { cmd.stroff += slide; }
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(&cmd, sizeof(cmd));
hdrpos += sizeof(cmd);
} break;
case Mach_command::LC_DYSYMTAB: {
Mach_dysymtab_command cmd; memcpy(&cmd, seg, sizeof(cmd));
if (o_end_txt <= cmd.tocoff) { cmd.tocoff += slide; }
if (o_end_txt <= cmd.modtaboff) { cmd.modtaboff += slide; }
if (o_end_txt <= cmd.extrefsymoff) { cmd.extrefsymoff += slide; }
if (o_end_txt <= cmd.indirectsymoff) { cmd.indirectsymoff += slide; }
if (o_end_txt <= cmd.extreloff) { cmd.extreloff += slide; }
if (o_end_txt <= cmd.locreloff) { cmd.locreloff += slide; }
fo->seek(hdrpos, SEEK_SET);
fo->rewrite(&cmd, sizeof(cmd));
hdrpos += sizeof(cmd);
} break;
} // end 'switch'
fo->seek(opos, SEEK_SET); // BUG: "fo->seek(0, SEEK_END);" is broken
PackMachBase<T>::pack4(fo, ft);
}
void PackDylibI386::pack4(OutputFile *fo, Filter &ft) // append PackHeader
{
pack4dylib(fo, ft, threado.state.eip);
}
void PackDylibAMD64::pack4(OutputFile *fo, Filter &ft) // append PackHeader
{
pack4dylib(fo, ft, threado.state.rip);
}
void PackDylibPPC32::pack4(OutputFile *fo, Filter &ft) // append PackHeader
{
pack4dylib(fo, ft, threado.state.srr0);
}
void PackDylibPPC64LE::pack4(OutputFile *fo, Filter &ft) // append PackHeader
{
pack4dylib(fo, ft, threado.state64.srr0);
}
template <class T>
off_t PackMachBase<T>::pack3(OutputFile *fo, Filter &ft) // append loader
{
TE32 disp;
upx_uint64_t const zero = 0;
unsigned len = fo->getBytesWritten();
fo->write(&zero, 3& (0u-len));
len += (3& (0u-len));
disp = len; // backward offset to Mach_header
fo->write(&disp, sizeof(disp));
len += sizeof(disp);
if (my_filetype!=Mach_header::MH_DYLIB) {
disp = len - sz_mach_headers; // backward offset to start of compressed data
fo->write(&disp, sizeof(disp));
len += sizeof(disp);
}
segTEXT.vmsize = segTEXT.filesize;
threado_setPC(entryVMA= len + segTEXT.vmaddr);
return super::pack3(fo, ft);
}
off_t PackDylibI386::pack3(OutputFile *fo, Filter &ft) // append loader
{
TE32 disp;
upx_uint32_t const zero = 0;
off_t len = fo->getBytesWritten();
fo->write(&zero, 3& (0u-len));
len += (3& (0u-len)) + 4*sizeof(disp);
disp = prev_mod_init_func;
fo->write(&disp, sizeof(disp)); // user .init_address
disp = secTEXT.offset + sizeof(l_info) + sizeof(p_info);
fo->write(&disp, sizeof(disp)); // src offset(compressed __TEXT)
disp = len - disp - 3*sizeof(disp);
fo->write(&disp, sizeof(disp)); // length(compressed __TEXT)
unsigned const save_sz_mach_headers(sz_mach_headers);
sz_mach_headers = 0;
len = super::pack3(fo, ft);
sz_mach_headers = save_sz_mach_headers;
return len;
}
off_t PackDylibAMD64::pack3(OutputFile *fo, Filter &ft) // append loader
{
TE32 disp;
upx_uint64_t const zero = 0;
off_t len = fo->getBytesWritten();
fo->write(&zero, 3& (0u-len));
len += (3& (0u-len)) + 3*sizeof(disp);
disp = prev_mod_init_func;
fo->write(&disp, sizeof(disp)); // user .init_address
disp = secTEXT.offset + sizeof(l_info) + sizeof(p_info);
fo->write(&disp, sizeof(disp)); // src offset(b_info)
disp = rawmseg[0].vmsize;
fo->write(&disp, sizeof(disp)); // __TEXT.vmsize when expanded
unsigned const save_sz_mach_headers(sz_mach_headers);
sz_mach_headers = 0;
len = super::pack3(fo, ft);
sz_mach_headers = save_sz_mach_headers;
return len;
}
off_t PackDylibPPC32::pack3(OutputFile *fo, Filter &ft) // append loader
{
TE32 disp;
upx_uint32_t const zero = 0;
off_t len = fo->getBytesWritten();
fo->write(&zero, 3& (0u-len));
len += (3& (0u-len)) + 4*sizeof(disp);
disp = prev_mod_init_func;
fo->write(&disp, sizeof(disp)); // user .init_address
disp = secTEXT.offset + sizeof(l_info) + sizeof(p_info);
fo->write(&disp, sizeof(disp)); // src offset(compressed __TEXT)
disp = len - disp - 3*sizeof(disp);
fo->write(&disp, sizeof(disp)); // length(compressed __TEXT)
unsigned const save_sz_mach_headers(sz_mach_headers);
sz_mach_headers = 0;
len = super::pack3(fo, ft);
sz_mach_headers = save_sz_mach_headers;
return len;
}
off_t PackDylibPPC64LE::pack3(OutputFile *fo, Filter &ft) // append loader
{
TE64 disp;
upx_uint64_t const zero = 0;
off_t len = fo->getBytesWritten();
fo->write(&zero, 3& (0u-len));
len += (3& (0u-len)) + 4*sizeof(disp);
disp = prev_mod_init_func;
fo->write(&disp, sizeof(disp)); // user .init_address
disp = secTEXT.offset + sizeof(l_info) + sizeof(p_info);
fo->write(&disp, sizeof(disp)); // src offset(compressed __TEXT)
disp = len - disp - 3*sizeof(disp);
fo->write(&disp, sizeof(disp)); // length(compressed __TEXT)
unsigned const save_sz_mach_headers(sz_mach_headers);
sz_mach_headers = 0;
len = super::pack3(fo, ft);
sz_mach_headers = save_sz_mach_headers;
return len;
}
// Determine length of gap between PT_LOAD phdri[k] and closest PT_LOAD
// which follows in the file (or end-of-file). Optimize for common case
// where the PT_LOAD are adjacent ascending by .p_offset. Assume no overlap.
template <class T>
unsigned PackMachBase<T>::find_SEGMENT_gap(
unsigned const k, unsigned pos_eof
)
{
unsigned const lc_seg = lc_segment[sizeof(Addr)>>3];
if (lc_seg!=msegcmd[k].cmd
|| 0==msegcmd[k].filesize ) {
return 0;
}
unsigned const hi = msegcmd[k].fileoff + msegcmd[k].filesize;
unsigned lo = pos_eof;
unsigned j = k;
for (;;) { // circular search, optimize for adjacent ascending
++j;
if (n_segment==j) {
j = 0;
}
if (k==j) {
break;
}
if (lc_seg==msegcmd[j].cmd
&& 0!=msegcmd[j].filesize ) {
unsigned const t = (unsigned) msegcmd[j].fileoff;
if ((t - hi) < (lo - hi)) {
lo = t;
if (hi==lo) {
break;
}
}
}
}
return lo - hi;
}
template <class T>
int PackMachBase<T>::pack2(OutputFile *fo, Filter &ft) // append compressed body
{
unsigned const lc_seg = lc_segment[sizeof(Addr)>>3];
Extent x;
unsigned k;
// count passes, set ptload vars
uip->ui_total_passes = 0;
for (k = 0; k < n_segment; ++k) {
if (lc_seg==msegcmd[k].cmd
&& 0!=msegcmd[k].filesize ) {
uip->ui_total_passes++;
if (my_filetype==Mach_header::MH_DYLIB) {
break;
}
if (find_SEGMENT_gap(k, fi->st_size())) {
uip->ui_total_passes++;
}
}
}
// compress extents
unsigned total_in = 0;
unsigned total_out = 0;
unsigned hdr_u_len = mhdri.sizeofcmds + sizeof(mhdri);
uip->ui_pass = 0;
ft.addvalue = 0;
// Packer::compressWithFilters chooses a filter for us, and the stubs
// can handle only one filter, and most filters are for executable
// instructions. So filter only the largest executable segment.
unsigned exe_filesize_max = 0;
for (k = 0; k < n_segment; ++k)
if (lc_seg==msegcmd[k].cmd
&& 0!=(Mach_command::VM_PROT_EXECUTE & msegcmd[k].initprot)
&& exe_filesize_max < msegcmd[k].filesize) {
exe_filesize_max = (unsigned) msegcmd[k].filesize;
}
int nx = 0;
for (k = 0; k < n_segment; ++k)
if (lc_seg==msegcmd[k].cmd
&& 0!=msegcmd[k].filesize ) {
x.offset = msegcmd[k].fileoff;
x.size = msegcmd[k].filesize;
if (0 == nx) { // 1st LC_SEGMENT must cover Mach_header at 0==fileoffset
unsigned const delta = mhdri.sizeofcmds + sizeof(mhdri);
x.offset += delta;
x.size -= delta;
}
bool const do_filter = (msegcmd[k].filesize==exe_filesize_max)
&& 0!=(Mach_command::VM_PROT_EXECUTE & msegcmd[k].initprot);
packExtent(x, total_in, total_out,
(do_filter ? &ft : 0 ), fo, hdr_u_len );
if (do_filter) {
exe_filesize_max = 0;
}
hdr_u_len = 0;
++nx;
if (my_filetype==Mach_header::MH_DYLIB) {
break;
}
}
if (my_filetype!=Mach_header::MH_DYLIB)
for (k = 0; k < n_segment; ++k) {
x.size = find_SEGMENT_gap(k, fi->st_size());
if (x.size) {
x.offset = msegcmd[k].fileoff +msegcmd[k].filesize;
packExtent(x, total_in, total_out, 0, fo);
}
}
if (my_filetype!=Mach_header::MH_DYLIB)
if ((off_t)total_in != file_size)
throwEOFException();
segTEXT.filesize = fo->getBytesWritten();
secTEXT.size = segTEXT.filesize - overlay_offset + sizeof(linfo);
return 1;
}
void PackMachPPC32::pack1_setup_threado(OutputFile *const fo)
{
threado.cmd = Mach_command::LC_UNIXTHREAD;
threado.cmdsize = sizeof(threado);
threado.flavor = my_thread_flavor;
threado.count = my_thread_state_word_count;
memset(&threado.state, 0, sizeof(threado.state));
fo->write(&threado, sizeof(threado));
}
void PackMachPPC64LE::pack1_setup_threado(OutputFile *const fo)
{
threado.cmd = Mach_command::LC_UNIXTHREAD;
threado.cmdsize = sizeof(threado);
threado.flavor = my_thread_flavor;
threado.count = my_thread_state_word_count;
memset(&threado.state64, 0, sizeof(threado.state64));
fo->write(&threado, sizeof(threado));
}
void PackMachI386::pack1_setup_threado(OutputFile *const fo)
{
threado.cmd = Mach_command::LC_UNIXTHREAD;
threado.cmdsize = sizeof(threado);
threado.flavor = my_thread_flavor;
threado.count = my_thread_state_word_count;
memset(&threado.state, 0, sizeof(threado.state));
fo->write(&threado, sizeof(threado));
}
void PackMachAMD64::pack1_setup_threado(OutputFile *const fo)
{
threado.cmd = Mach_command::LC_UNIXTHREAD;
threado.cmdsize = sizeof(threado);
threado.flavor = my_thread_flavor;
threado.count = my_thread_state_word_count;
memset(&threado.state, 0, sizeof(threado.state));
fo->write(&threado, sizeof(threado));
}
void PackMachARMEL::pack1_setup_threado(OutputFile *const fo)
{
threado.cmd = Mach_command::LC_UNIXTHREAD;
threado.cmdsize = sizeof(threado);
threado.flavor = my_thread_flavor;
threado.count = my_thread_state_word_count;
memset(&threado.state, 0, sizeof(threado.state));
fo->write(&threado, sizeof(threado));
}
void PackMachARM64EL::pack1_setup_threado(OutputFile *const fo)
{
threado.cmd = Mach_command::LC_UNIXTHREAD;
threado.cmdsize = sizeof(threado);
threado.flavor = my_thread_flavor;
threado.count = my_thread_state_word_count;
memset(&threado.state, 0, sizeof(threado.state));
fo->write(&threado, sizeof(threado));
}
template <class T>
void PackMachBase<T>::pack1(OutputFile *const fo, Filter &/*ft*/) // generate executable header
{
unsigned const lc_seg = lc_segment[sizeof(Addr)>>3];
mhdro = mhdri;
if (my_filetype==Mach_header::MH_EXECUTE) {
memcpy(&mhdro, stub_main, sizeof(mhdro));
mhdro.flags = mhdri.flags;
COMPILE_TIME_ASSERT(sizeof(mhdro.flags) == sizeof(unsigned))
}
unsigned pos = sizeof(mhdro);
fo->write(&mhdro, sizeof(mhdro));
memset(&segZERO, 0, sizeof(segZERO));
segZERO.cmd = lc_seg;
segZERO.cmdsize = sizeof(segZERO);
strncpy((char *)segZERO.segname, "__PAGEZERO", sizeof(segZERO.segname));
segZERO.vmsize = PAGE_SIZE;
if __acc_cte(sizeof(segZERO.vmsize) == 8
&& mhdro.filetype == Mach_header::MH_EXECUTE
&& mhdro.cputype == Mach_header::CPU_TYPE_X86_64) {
if (pagezero_vmsize < 0xF0000000ull) {
segZERO.vmsize = pagezero_vmsize;
}
else {
segZERO.vmsize <<= 20; // (1ul<<32)
}
}
segTEXT.cmd = lc_seg;
segTEXT.cmdsize = sizeof(segTEXT) + sizeof(secTEXT);
strncpy((char *)segTEXT.segname, "__TEXT", sizeof(segTEXT.segname));
if (my_filetype==Mach_header::MH_EXECUTE) {
if (Mach_header::MH_PIE & mhdri.flags) {
segTEXT.vmaddr = segZERO.vmsize; // contiguous
}
else { // not MH_PIE
// Start above all eventual mappings.
// Cannot enlarge segZERO.vmsize because MacOS 10.13 (HighSierra)
// won't permit re-map of PAGEZERO.
// Stub will fill with PROT_NONE first.
segTEXT.vmaddr = vma_max;
}
}
if (my_filetype==Mach_header::MH_DYLIB) {
segTEXT.vmaddr = 0;
}
segTEXT.vmsize = 0; // adjust later
segTEXT.fileoff = 0;
segTEXT.filesize = 0; // adjust later
segTEXT.maxprot =
Mach_command::VM_PROT_READ |
Mach_command::VM_PROT_WRITE |
Mach_command::VM_PROT_EXECUTE;
segTEXT.initprot =
Mach_command::VM_PROT_READ |
Mach_command::VM_PROT_EXECUTE;
segTEXT.nsects = 1; // secTEXT
segTEXT.flags = 0;
memset(&secTEXT, 0, sizeof(secTEXT));
strncpy((char *)secTEXT.sectname, "__text", sizeof(secTEXT.sectname));
memcpy(secTEXT.segname, segTEXT.segname, sizeof(secTEXT.segname));
secTEXT.align = 2; // (1<<2) ==> 4
secTEXT.flags = Mach_section_command::S_REGULAR
| Mach_section_command::S_ATTR_SOME_INSTRUCTIONS
| Mach_section_command::S_ATTR_PURE_INSTRUCTIONS;
segXHDR = segTEXT;
segXHDR.cmdsize = sizeof(segXHDR) + sizeof(secXHDR);
segXHDR.vmaddr = segZERO.vmsize;
segXHDR.vmsize = PAGE_SIZE;
segXHDR.filesize = PAGE_SIZE;
segXHDR.nsects = 1;
strncpy((char *)segXHDR.segname, "UPX_DATA", sizeof(segXHDR.segname));
memset(&secXHDR, 0, sizeof(secXHDR));
strncpy((char *)secXHDR.sectname, "upx_data", sizeof(secXHDR.sectname));
memcpy(secXHDR.segname, segXHDR.segname, sizeof(secXHDR.segname));
secXHDR.addr = segXHDR.vmaddr;
secXHDR.size = 0; // empty so far
secXHDR.align = 2; // (1<<2) ==> 4
segLINK = segTEXT;
segLINK.cmdsize = sizeof(segLINK);
strncpy((char *)segLINK.segname, "__LINKEDIT", sizeof(segLINK.segname));
segLINK.initprot = Mach_command::VM_PROT_READ;
segLINK.nsects = 0;
segLINK.vmsize = 0;
// Adjust later: .vmaddr .vmsize .fileoff .filesize
unsigned gap = 0;
if (my_filetype == Mach_header::MH_EXECUTE) {
unsigned cmdsize = mhdro.sizeofcmds;
Mach_header const *const ptr0 = (Mach_header const *)stub_main;
Mach_command const *ptr1 = (Mach_command const *)(1+ ptr0);
for (unsigned j = 0; j < mhdro.ncmds -1; ++j, (cmdsize -= ptr1->cmdsize),
ptr1 = (Mach_command const *)(ptr1->cmdsize + (char const *)ptr1)) {
if (lc_seg == ptr1->cmd) {
Mach_segment_command const *const segptr = (Mach_segment_command const *)ptr1;
Mach_section_command const *const secptr = (Mach_section_command const *)(1+ segptr);
if (!strcmp("__TEXT", segptr->segname)) {
strncpy((char *)secTEXT.segname, "__TEXT", sizeof(secTEXT.segname));
strncpy((char *)secTEXT.sectname, "upxTEXT", sizeof(secTEXT.sectname));
secTEXT.addr = secptr->addr;
secTEXT.size = secptr->size; // update later
secTEXT.offset = secptr->offset;
secTEXT.align = secptr->align;
}
if (!strcmp("__LINKEDIT", segptr->segname)) {
// Mach_command before __LINKEDIT
pos += (char const *)ptr1 - (char const *)(1+ ptr0);
fo->write((1+ ptr0), (char const *)ptr1 - (char const *)(1+ ptr0));
// Mach_command __LINKEDIT and after
pos += cmdsize;
fo->write((char const *)ptr1, cmdsize);
// 400: space for LC_UUID, LC_RPATH, LC_CODE_SIGNATURE, etc.
gap = 400 + threado_size();
secTEXT.offset = gap + pos;
secTEXT.addr = secTEXT.offset + segTEXT.vmaddr;
break;
}
}
}
unsigned const sz_threado = threado_size();
MemBuffer space(sz_threado); memset(space, 0, sz_threado);
fo->write(space, sz_threado);
}
else if (my_filetype == Mach_header::MH_DYLIB) {
Mach_command const *ptr = (Mach_command const *)rawmseg;
unsigned cmdsize = mhdri.sizeofcmds;
for (unsigned j = 0; j < mhdri.ncmds; ++j, (cmdsize -= ptr->cmdsize),
ptr = (Mach_command const *)(ptr->cmdsize + (char const *)ptr)) {
if (lc_seg == ptr->cmd) {
Mach_segment_command const *const segptr = (Mach_segment_command const *)ptr;
Mach_section_command const *const secptr = (Mach_section_command const *)(1+ segptr);
if (!strcmp("__TEXT", segptr->segname)) {
if (!(1 <= segptr->nsects)) {
throwCantPack("TEXT.nsects == 0");
}
strncpy((char *)secTEXT.sectname, "upxTEXT", sizeof(secTEXT.sectname));
secTEXT.addr = secptr->addr;
secTEXT.size = secptr->size; // update later
secTEXT.offset = secptr->offset;
secTEXT.align = secptr->align;
fo->write(&segTEXT, sizeof(segTEXT));
fo->write(&secTEXT, sizeof(secTEXT));
}
else { // not __TEXT
fo->write(ptr, ptr->cmdsize);
}
}
else { // not LC_SEGMENT*
fo->write(ptr, ptr->cmdsize);
}
}
memset(&linkitem, 0, sizeof(linkitem));
fo->write(&linkitem, sizeof(linkitem));
}
sz_mach_headers = fo->getBytesWritten();
gap = secTEXT.offset - sz_mach_headers;
MemBuffer filler(gap); filler.clear();
fo->write(filler, gap);
sz_mach_headers += gap;
memset((char *)&linfo, 0, sizeof(linfo));
fo->write(&linfo, sizeof(linfo));
return;
}
#define WANT_MACH_HEADER_ENUM 1
#include "p_mach_enum.h"
static unsigned
umin(unsigned a, unsigned b)
{
return (a <= b) ? a : b;
}
template <class T>
void PackMachBase<T>::unpack(OutputFile *fo)
{
unsigned const lc_seg = lc_segment[sizeof(Addr)>>3];
fi->seek(0, SEEK_SET);
fi->readx(&mhdri, sizeof(mhdri));
if ((MH_MAGIC + (sizeof(Addr)>>3)) != mhdri.magic
&& Mach_fat_header::FAT_MAGIC != mhdri.magic) {
throwCantUnpack("file header corrupted");
}
unsigned const sz_cmds = mhdri.sizeofcmds;
if ((sizeof(mhdri) + sz_cmds) > (size_t)fi->st_size()) {
throwCantUnpack("file header corrupted");
}
rawmseg = (Mach_segment_command *) New(char, sz_cmds);
fi->readx(rawmseg, mhdri.sizeofcmds);
// FIXME forgot space left for LC_CODE_SIGNATURE;
// but canUnpack() sets overlay_offset anyway.
//overlay_offset = sizeof(mhdri) + mhdri.sizeofcmds + sizeof(linfo);
fi->seek(overlay_offset, SEEK_SET);
p_info hbuf;
fi->readx(&hbuf, sizeof(hbuf));
unsigned const orig_file_size = get_te32(&hbuf.p_filesize);
blocksize = get_te32(&hbuf.p_blocksize); // emacs-21.2.1 was 0x01d47e6c (== 30703212)
if (blocksize > orig_file_size || blocksize > 0x05000000)
throwCantUnpack("file header corrupted");
if (file_size > (off_t)orig_file_size) {
opt->info_mode += !opt->info_mode ? 1 : 0; // make visible
opt->backup = 1;
infoWarning("packed size too big; discarding appended data, keeping backup");
}
ibuf.alloc(blocksize + OVERHEAD);
b_info bhdr; memset(&bhdr, 0, sizeof(bhdr));
fi->readx(&bhdr, sizeof(bhdr));
ph.u_len = get_te32(&bhdr.sz_unc);
ph.c_len = get_te32(&bhdr.sz_cpr);
if ((unsigned)file_size < ph.c_len || ph.c_len == 0 || ph.u_len == 0)
throwCantUnpack("file header corrupted");
ph.method = bhdr.b_method;
ph.filter = bhdr.b_ftid;
ph.filter_cto = bhdr.b_cto8;
// Uncompress Macho headers
fi->readx(ibuf, ph.c_len);
Mach_header *const mhdr = (Mach_header *) New(upx_byte, ph.u_len);
decompress(ibuf, (upx_byte *)mhdr, false);
if (mhdri.magic != mhdr->magic
|| mhdri.cputype != mhdr->cputype
|| mhdri.cpusubtype != mhdr->cpusubtype
|| mhdri.filetype != mhdr->filetype)
throwCantUnpack("file header corrupted");
unsigned const ncmds = mhdr->ncmds;
msegcmd = New(Mach_segment_command, ncmds);
unsigned char const *ptr = (unsigned char const *)(1+mhdr);
for (unsigned j= 0; j < ncmds; ++j) {
memcpy(&msegcmd[j], ptr, umin(sizeof(Mach_segment_command),
((Mach_command const *)ptr)->cmdsize));
ptr += (unsigned) ((Mach_command const *)ptr)->cmdsize;
if (ptr_udiff(ptr, (1+ mhdr)) > ph.u_len) {
throwCantUnpack("cmdsize");
}
}
// Put LC_SEGMENT together at the beginning
qsort(msegcmd, ncmds, sizeof(*msegcmd), compare_segment_command);
n_segment = 0;
for (unsigned j= 0; j < ncmds; ++j) {
n_segment += (lc_seg==msegcmd[j].cmd);
}
unsigned total_in = 0;
unsigned total_out = 0;
unsigned c_adler = upx_adler32(NULL, 0);
unsigned u_adler = upx_adler32(NULL, 0);
fi->seek(- (off_t)(sizeof(bhdr) + ph.c_len), SEEK_CUR);
for (unsigned k = 0; k < ncmds; ++k) {
if (msegcmd[k].cmd==lc_seg && msegcmd[k].filesize!=0) {
if (!strcmp("__TEXT", msegcmd[k].segname)) {
segTEXT = msegcmd[k];
}
if (fo)
fo->seek(msegcmd[k].fileoff, SEEK_SET);
unpackExtent(msegcmd[k].filesize, fo, total_in, total_out,
c_adler, u_adler, false, sizeof(bhdr));
if (my_filetype==Mach_header::MH_DYLIB) {
break; // only the first lc_seg when MH_DYLIB
}
}
}
Mach_segment_command const *sc = (Mach_segment_command const *)(void *)(1+ mhdr);
if (my_filetype==Mach_header::MH_DYLIB) { // rest of lc_seg are not compressed
upx_uint64_t cpr_mod_init_func(0);
TE32 unc_mod_init_func; *(int *)&unc_mod_init_func = 0;
Mach_segment_command const *rc = rawmseg;
rc = (Mach_segment_command const *)(rc->cmdsize + (char const *)rc);
sc = (Mach_segment_command const *)(sc->cmdsize + (char const *)sc);
for (
unsigned k=1; // skip first lc_seg, which was uncompressed above
k < ncmds;
(++k), (sc = (Mach_segment_command const *)(sc->cmdsize + (char const *)sc)),
(rc = (Mach_segment_command const *)(rc->cmdsize + (char const *)rc))
) {
if (lc_seg==rc->cmd
&& 0!=rc->filesize ) {
if (!strcmp("__DATA", rc->segname)) {
cpr_mod_init_func = get_mod_init_func(rc);
fi->seek(cpr_mod_init_func - 4*sizeof(TE32), SEEK_SET);
fi->readx(&unc_mod_init_func, sizeof(unc_mod_init_func));
}
fi->seek(rc->fileoff, SEEK_SET);
if (fo)
fo->seek(sc->fileoff, SEEK_SET);
unsigned const len = rc->filesize;
MemBuffer data(len);
fi->readx(data, len);
if (!strcmp("__DATA", rc->segname)) {
set_te32(&data[o__mod_init_func - rc->fileoff], unc_mod_init_func);
}
if (fo)
fo->write(data, len);
}
}
}
else
for (unsigned j = 0; j < ncmds; ++j) {
unsigned const size = find_SEGMENT_gap(j, orig_file_size);
if (size) {
unsigned const where = msegcmd[j].fileoff +msegcmd[j].filesize;
if (fo)
fo->seek(where, SEEK_SET);
unpackExtent(size, fo, total_in, total_out,
c_adler, u_adler, false, sizeof(bhdr));
}
}
delete [] mhdr;
}
// The prize is the value of overlay_offset: the offset of compressed data
template <class T>
int PackMachBase<T>::canUnpack()
{
unsigned const lc_seg = lc_segment[sizeof(Addr)>>3];
fi->seek(0, SEEK_SET);
fi->readx(&mhdri, sizeof(mhdri));
if (((unsigned) Mach_header::MH_MAGIC + (sizeof(Addr)>>3)) !=mhdri.magic
|| my_cputype !=mhdri.cputype
|| my_filetype !=mhdri.filetype
)
return false;
my_cpusubtype = mhdri.cpusubtype;
int headway = (int)mhdri.sizeofcmds;
sz_mach_headers = headway + sizeof(mhdri);
if (1024 < headway) {
infoWarning("Mach_header.sizeofcmds(%d) > 1024", headway);
}
rawmseg = (Mach_segment_command *) New(char, mhdri.sizeofcmds);
fi->readx(rawmseg, mhdri.sizeofcmds);
Mach_segment_command const *ptrTEXT = 0;
upx_uint64_t rip = 0;
unsigned style = 0;
off_t offLINK = 0;
unsigned pos_next = 0;
unsigned nseg = 0;
unsigned const ncmds = mhdri.ncmds;
Mach_command const *ptr = (Mach_command const *)rawmseg;
for (unsigned j= 0; j < ncmds;
ptr = (Mach_command const *)(ptr->cmdsize + (char const *)ptr), ++j) {
Mach_segment_command const *const segptr = (Mach_segment_command const *)ptr;
if (lc_seg == ptr->cmd) {
++nseg;
if (!strcmp("__XHDR", segptr->segname)) {
// PackHeader precedes __LINKEDIT (pre-Sierra MacOS 10.12)
style = 391; // UPX 3.91
}
if (!strcmp("__TEXT", segptr->segname)) {
ptrTEXT = segptr;
style = 391; // UPX 3.91
}
if (!strcmp("UPX_DATA", segptr->segname)) {
// PackHeader follows loader at __LINKEDIT (Sierra MacOS 10.12)
style = 392; // UPX 3.92
}
if (!strcmp("__LINKEDIT", segptr->segname)) {
offLINK = segptr->fileoff;
if (segptr->filesize == blankLINK) {
style = 395;
}
if (offLINK < (off_t) pos_next) {
offLINK = pos_next;
}
}
pos_next = segptr->filesize + segptr->fileoff;
if ((headway -= ptr->cmdsize) < 0) {
infoWarning("Mach_command[%u]{@%lu}.cmdsize = %u", j,
(unsigned long) (sizeof(mhdri) + mhdri.sizeofcmds - (headway + ptr->cmdsize)),
(unsigned)ptr->cmdsize);
throwCantUnpack("sum(.cmdsize) exceeds .sizeofcmds");
}
}
else if (Mach_command::LC_UNIXTHREAD==ptr->cmd) {
rip = entryVMA = threadc_getPC(ptr);
}
}
if (3==nseg && 395 != style) { // __PAGEZERO, __TEXT, __LINKEDIT; no __XHDR, no UPX_DATA
style = 392;
}
if (391==style && 0==offLINK && 2==ncmds) { // pre-3.91 ?
offLINK = ptrTEXT->fileoff + ptrTEXT->filesize; // fake __LINKEDIT at EOF
}
if (0 == style || 0 == offLINK) {
return false;
}
int const small = 32 + sizeof(overlay_offset);
unsigned bufsize = 4096;
if (391 == style) { // PackHeader precedes __LINKEDIT
fi->seek(offLINK - bufsize, SEEK_SET);
} else
if (392 == style) {
if (MH_DYLIB == my_filetype) {
fi->seek(fi->st_size() - bufsize, SEEK_SET);
}
else { // PackHeader follows loader at __LINKEDIT
if ((off_t)bufsize > (fi->st_size() - offLINK)) {
bufsize = fi->st_size() - offLINK;
}
fi->seek(offLINK, SEEK_SET);
}
} else
if (395 == style) {
fi->seek(offLINK - bufsize - sizeof(PackHeader), SEEK_SET);
}
MemBuffer buf(bufsize);
fi->readx(buf, bufsize);
int i = bufsize;
while (i > small && 0 == buf[--i]) { }
i -= small;
// allow incompressible extents
if (i < 1 || !getPackHeader(buf + i, bufsize - i, true)) {
// Breadcrumbs failed.
// Pirates might overwrite the UPX! marker. Try harder.
upx_uint64_t const rip_off = ptrTEXT ? (rip - ptrTEXT->vmaddr) : 0;
if (ptrTEXT && rip && rip_off < ptrTEXT->vmsize) {
fi->seek(ptrTEXT->fileoff + rip_off, SEEK_SET);
fi->readx(buf, bufsize);
unsigned char const *b = &buf[0];
unsigned disp = *(TE32 const *)&b[1];
// Emulate the code
if (0xe8==b[0] && disp < bufsize
&& 0x5d==b[5+disp] && 0xe8==b[6+disp]) {
unsigned disp2 = 0u - *(TE32 const *)&b[7+disp];
if (disp2 < (12+disp) && 0x5b==b[11+disp-disp2]) {
struct b_info const *bptr = (struct b_info const *)&b[11+disp];
// This is the folded stub.
// FIXME: check b_method?
if (bptr->sz_cpr < bptr->sz_unc && bptr->sz_unc < 0x1000) {
b = bptr->sz_cpr + (unsigned char const *)(1+ bptr);
// FIXME: check PackHeader::putPackHeader(), packhead.cpp
overlay_offset = *(TE32 const *)(32 + b);
if (overlay_offset < 0x1000) {
return true; // success
}
overlay_offset = 0;
}
}
}
}
if (391==style) {
TE32 const *uptr = (TE32 const *)&buf[bufsize];
while (0==*--uptr) /*empty*/ ;
overlay_offset = *uptr;
if (mhdri.sizeofcmds <= overlay_offset && overlay_offset < 0x1000) {
return true; // success
}
overlay_offset = 0;
return false;
}
if (392==style) {
overlay_offset = 0x100c; // (l_info precedes;) p_info; b_info; cpr_data
// p_info isn't used for execution, so it has less value for checking:
// 0== .p_progid
// .p_filesize == .p_blocksize
fi->seek(overlay_offset, SEEK_SET);
fi->readx(buf, bufsize);
struct p_info const *const p_ptr = (struct p_info const *)&buf[0];
struct b_info const *const b_ptr = (struct b_info const *)(1+ p_ptr);
TE32 const *uptr = (TE32 const *)(1+ b_ptr);
if (b_ptr->sz_unc < 0x4000
&& b_ptr->sz_cpr < b_ptr->sz_unc ) {
unsigned const method = b_ptr->b_method;
if ((M_NRV2B_LE32 == method || M_NRV2E_LE32 == method)
&& (0xff>>2)==(uptr[0] >> (2+ 24)) // 1st 6 bytes are unique literals
&& (Mach_header::MH_MAGIC + (sizeof(Addr)>>3)) == uptr[1]) {
return true;
}
unsigned const magic = get_te32(1+ (char const *)uptr);
if ((M_NRV2B_8 == method || M_NRV2E_8 == method)
&& 0xfc==(0xfc & uptr[0])
&& (Mach_header::MH_MAGIC + (sizeof(Addr)>>3)) == magic) {
return true;
}
// FIXME: M_LZMA
}
overlay_offset = 0;
// The first non-zero word scanning backwards from __LINKEDIT.fileoff
// is the total length of compressed data which precedes it
//(distance to l_info), so that's another method.
fi->seek(offLINK - 0x1000, SEEK_SET);
fi->readx(buf, 0x1000);
unsigned const *const lo = (unsigned const *)&buf[0];
unsigned const *p;
for (p = (unsigned const *)&buf[0x1000]; p > lo; ) if (*--p) {
overlay_offset = *(TE32 const *)p;
if ((off_t)overlay_offset < offLINK) {
overlay_offset = ((char const *)p - (char const *)lo) +
(offLINK - 0x1000) - overlay_offset + sizeof(l_info);
fi->seek(overlay_offset, SEEK_SET);
fi->readx(buf, bufsize);
if (b_ptr->sz_unc < 0x4000
&& b_ptr->sz_cpr < b_ptr->sz_unc ) {
return true;
}
}
}
}
}
overlay_offset = 0; // impossible value
int l = ph.buf_offset + ph.getPackHeaderSize();
if (0 <= l && (unsigned)(l + sizeof(TE32)) <=bufsize) {
overlay_offset = get_te32(buf + i + l);
}
if ( overlay_offset < sz_mach_headers
|| (off_t)overlay_offset >= file_size) {
infoWarning("file corrupted");
MemBuffer buf2(umin(1<<14, file_size));
fi->seek(sz_mach_headers, SEEK_SET);
fi->readx(buf2, buf2.getSize());
unsigned const *p = (unsigned const *)&buf2[0];
unsigned const *const e_buf2 = (unsigned const *)&buf2[buf2.getSize() - 4*sizeof(*p)];
for (; p <= e_buf2; ++p)
if ( 0==p[0] // p_info.p_progid
&& 0!=p[1] // p_info.p_filesize
&& p[2]==p[1] // p_info.p_blocksize == p_info.p_filesize
&& (unsigned)file_size < get_te32(&p[1]) // compression was worthwhile
&& sz_mach_headers==get_te32(&p[3]) // b_info.sz_unc
) {
overlay_offset = ((char const *)p - (char const *)&buf2[0]) + sz_mach_headers;
if (!(3&overlay_offset // not word aligned
|| overlay_offset < sz_mach_headers
|| (off_t)overlay_offset >= file_size)) {
infoWarning("attempting recovery, overlay_offset = %#x", overlay_offset);
return true;
}
}
throwCantUnpack("file corrupted");
}
return true;
}
#define WANT_MACH_SEGMENT_ENUM
#define WANT_MACH_SECTION_ENUM
#include "p_mach_enum.h"
template <class T>
upx_uint64_t PackMachBase<T>::get_mod_init_func(Mach_segment_command const *segptr)
{
for (Mach_section_command const *secptr = (Mach_section_command const *)(1+ segptr);
ptr_udiff(secptr, segptr) < segptr->cmdsize;
++secptr
) {
if (sizeof(Addr) == secptr->size
&& !strcmp("__mod_init_func", secptr->sectname)) {
o__mod_init_func = secptr->offset;
fi->seek(o__mod_init_func, SEEK_SET);
Addr tmp;
fi->readx(&tmp, sizeof(Addr));
return tmp;
}
}
return 0;
}
template <class T>
bool PackMachBase<T>::canPack()
{
unsigned const lc_seg = lc_segment[sizeof(Addr)>>3];
fi->seek(0, SEEK_SET);
fi->readx(&mhdri, sizeof(mhdri));
if (((unsigned) Mach_header::MH_MAGIC + (sizeof(Addr)>>3)) !=mhdri.magic
|| my_cputype !=mhdri.cputype
|| my_filetype !=mhdri.filetype
)
return false;
my_cpusubtype = mhdri.cpusubtype;
unsigned const sz_mhcmds = (unsigned)mhdri.sizeofcmds;
unsigned headway = file_size - sizeof(mhdri);
if (headway < sz_mhcmds) {
char buf[32]; snprintf(buf, sizeof(buf), "bad sizeofcmds %d", sz_mhcmds);
throwCantPack(buf);
}
if (16384 < sz_mhcmds) { // somewhat arbitrary, but amd64-darwin.macho-upxmain.c
throwCantPack("16384 < Mach_header.sizeofcmds");
}
rawmseg = (Mach_segment_command *) New(char, sz_mhcmds);
fi->readx(rawmseg, mhdri.sizeofcmds);
unsigned const ncmds = mhdri.ncmds;
if (256 < ncmds) { // arbitrary, but guard against garbage
throwCantPack("256 < Mach_header.ncmds");
}
msegcmd = New(Mach_segment_command, ncmds);
unsigned char const *ptr = (unsigned char const *)rawmseg;
for (unsigned j= 0; j < ncmds; ++j) {
Mach_segment_command const *segptr = (Mach_segment_command const *)ptr;
if (headway < ((Mach_command const *)ptr)->cmdsize) {
char buf[64]; snprintf(buf, sizeof(buf),
"bad Mach_command[%d]{%#x, %#x}", j,
(unsigned)segptr->cmd, (unsigned)((Mach_command const *)ptr)->cmdsize);
throwCantPack(buf);
}
headway -= ((Mach_command const *)ptr)->cmdsize;
if (lc_seg == segptr->cmd) {
msegcmd[j] = *segptr;
if (!strcmp("__DATA", segptr->segname)) {
prev_mod_init_func = get_mod_init_func(segptr);
}
}
else {
memcpy(&msegcmd[j], ptr, 2*sizeof(unsigned)); // cmd and cmdsize
}
switch (((Mach_uuid_command const *)ptr)->cmd) {
default: break;
case Mach_command::LC_UUID: {
memcpy(&cmdUUID, ptr, sizeof(cmdUUID)); // remember the UUID
// Set output UUID to be 1 more than the input UUID.
for (unsigned k = 0; k < sizeof(cmdUUID.uuid); ++k) {
if (0 != ++cmdUUID.uuid[k]) { // no Carry
break;
}
}
} break;
case Mach_command::LC_VERSION_MIN_MACOSX: {
memcpy(&cmdVERMIN, ptr, sizeof(cmdVERMIN));
} break;
case Mach_command::LC_SOURCE_VERSION: {
memcpy(&cmdSRCVER, ptr, sizeof(cmdSRCVER));
} break;
}
ptr += (unsigned) ((Mach_command const *)ptr)->cmdsize;
}
if (Mach_header::MH_DYLIB==my_filetype && 0==o__mod_init_func) {
infoWarning("missing -init function");
return false;
}
// Put LC_SEGMENT together at the beginning
qsort(msegcmd, ncmds, sizeof(*msegcmd), compare_segment_command);
if (lc_seg==msegcmd[0].cmd && 0==msegcmd[0].vmaddr
&& !strcmp("__PAGEZERO", msegcmd[0].segname)) {
pagezero_vmsize = msegcmd[0].vmsize;
}
// Check alignment of non-null LC_SEGMENT.
vma_max = 0;
for (unsigned j= 0; j < ncmds; ++j) {
if (lc_seg==msegcmd[j].cmd) {
++n_segment;
if (~PAGE_MASK & (msegcmd[j].fileoff | msegcmd[j].vmaddr)) {
return false;
}
upx_uint64_t t = msegcmd[j].vmsize + msegcmd[j].vmaddr;
if (vma_max < t) {
vma_max = t;
}
// Segments need not be contigous {esp. "rust")
sz_segment = msegcmd[j].filesize + msegcmd[j].fileoff - msegcmd[0].fileoff;
}
}
vma_max = PAGE_MASK & (~PAGE_MASK + vma_max);
// info: currently the header is 36 (32+4) bytes before EOF
unsigned char buf[256];
fi->seek(-(off_t)sizeof(buf), SEEK_END);
fi->readx(buf, sizeof(buf));
checkAlreadyPacked(buf, sizeof(buf));
// set options
opt->o_unix.blocksize = file_size;
if (!n_segment) {
return false;
}
struct {
unsigned cputype;
unsigned short filetype;
unsigned short sz_stub_entry;
unsigned short sz_stub_fold;
unsigned short sz_stub_main;
upx_byte const *stub_entry;
upx_byte const *stub_fold;
upx_byte const *stub_main;
} const stub_list[] = {
{CPU_TYPE_I386, MH_EXECUTE,
sizeof(stub_i386_darwin_macho_entry),
sizeof(stub_i386_darwin_macho_fold),
sizeof(stub_i386_darwin_macho_upxmain_exe),
stub_i386_darwin_macho_entry,
stub_i386_darwin_macho_fold,
stub_i386_darwin_macho_upxmain_exe
},
{CPU_TYPE_I386, MH_DYLIB,
sizeof(stub_i386_darwin_dylib_entry), 0, 0,
stub_i386_darwin_dylib_entry, 0, 0
},
{CPU_TYPE_X86_64, MH_EXECUTE,
sizeof(stub_amd64_darwin_macho_entry),
sizeof(stub_amd64_darwin_macho_fold),
0, //sizeof(stub_amd64_darwin_macho_upxmain_exe),
stub_amd64_darwin_macho_entry,
stub_amd64_darwin_macho_fold,
0 // stub_amd64_darwin_macho_upxmain_exe
},
{CPU_TYPE_X86_64, MH_DYLIB,
sizeof(stub_amd64_darwin_dylib_entry), 0, 0,
stub_amd64_darwin_dylib_entry, 0, 0
},
{CPU_TYPE_ARM, MH_EXECUTE,
sizeof(stub_arm_v5a_darwin_macho_entry),
sizeof(stub_arm_v5a_darwin_macho_fold),
0,
stub_arm_v5a_darwin_macho_entry,
stub_arm_v5a_darwin_macho_fold,
0
},
{CPU_TYPE_ARM64, MH_EXECUTE,
sizeof(stub_arm64_darwin_macho_entry),
sizeof(stub_arm64_darwin_macho_fold),
0,
stub_arm64_darwin_macho_entry,
stub_arm64_darwin_macho_fold,
0
},
{CPU_TYPE_POWERPC, MH_EXECUTE,
sizeof(stub_powerpc_darwin_macho_entry),
sizeof(stub_powerpc_darwin_macho_fold),
sizeof(stub_powerpc_darwin_macho_upxmain_exe),
stub_powerpc_darwin_macho_entry,
stub_powerpc_darwin_macho_fold,
stub_powerpc_darwin_macho_upxmain_exe
},
{CPU_TYPE_POWERPC, MH_DYLIB,
sizeof(stub_powerpc_darwin_dylib_entry), 0, 0,
stub_powerpc_darwin_dylib_entry, 0, 0
},
{CPU_TYPE_POWERPC64LE, MH_EXECUTE,
sizeof(stub_powerpc64le_darwin_macho_entry),
sizeof(stub_powerpc64le_darwin_macho_fold),
0,
stub_powerpc64le_darwin_macho_entry,
stub_powerpc64le_darwin_macho_fold,
0
},
{CPU_TYPE_POWERPC64LE, MH_DYLIB,
sizeof(stub_powerpc64le_darwin_dylib_entry), 0, 0,
stub_powerpc64le_darwin_dylib_entry, 0, 0
},
{0,0, 0,0,0, 0,0,0}
};
for (unsigned j = 0; stub_list[j].cputype; ++j) {
if (stub_list[j].cputype == my_cputype
&& stub_list[j].filetype == my_filetype) {
sz_stub_entry = stub_list[j].sz_stub_entry;
stub_entry = stub_list[j].stub_entry;
sz_stub_fold = stub_list[j].sz_stub_fold;
stub_fold = stub_list[j].stub_fold;
sz_stub_main = stub_list[j].sz_stub_main;
stub_main = stub_list[j].stub_main;
if (!stub_main) { // development stub
static struct {
Mach_header mhdri;
Mach_segment_command segZERO;
Mach_segment_command segTEXT;
Mach_section_command secTEXT;
Mach_segment_command segLINK;
Mach_version_min_command cmdVERMIN;
Mach_source_version_command cmdSRCVER;
} fsm; // fake_stub_main
fsm.mhdri = mhdri;
fsm.mhdri.ncmds = 5;
fsm.mhdri.sizeofcmds = sizeof(fsm) - sizeof(fsm.mhdri);
fsm.mhdri.flags = MH_NOUNDEFS | MH_PIE;
fsm.segZERO.cmd = LC_SEGMENT + (fsm.mhdri.cputype >> 24)
* (LC_SEGMENT_64 - LC_SEGMENT);
fsm.segZERO.cmdsize = sizeof(Mach_segment_command);
strncpy(fsm.segZERO.segname, "__PAGEZERO", sizeof(fsm.segZERO.segname));
fsm.segZERO.vmaddr = 0;
fsm.segZERO.vmsize = (4<<16);
if __acc_cte(8==sizeof(void *)) fsm.segZERO.vmsize <<= (32 - 18);
fsm.segZERO.fileoff = 0;
fsm.segZERO.filesize = 0;
fsm.segZERO.maxprot = 0;
fsm.segZERO.initprot = 0;
fsm.segZERO.nsects = 0;
fsm.segZERO.flags = 0;
unsigned const slop = 400;
fsm.segTEXT.cmd = fsm.segZERO.cmd;
fsm.segTEXT.cmdsize = sizeof(Mach_segment_command)
+ sizeof(Mach_section_command);
strncpy(fsm.segTEXT.segname, "__TEXT", sizeof(fsm.segTEXT.segname));
fsm.segTEXT.vmaddr = fsm.segZERO.vmsize;
fsm.segTEXT.vmsize = slop + threado_size() + sizeof(fsm); // dummy
fsm.segTEXT.fileoff = 0;
fsm.segTEXT.filesize = fsm.segTEXT.vmsize; // dummy
fsm.segTEXT.maxprot = VM_PROT_EXECUTE | VM_PROT_READ;
fsm.segTEXT.initprot = VM_PROT_EXECUTE | VM_PROT_READ;
fsm.segTEXT.nsects = 1;
fsm.segTEXT.flags = 0;
strncpy(fsm.secTEXT.sectname, "__text", sizeof(fsm.secTEXT.sectname));
memcpy(fsm.secTEXT.segname, fsm.segTEXT.segname, sizeof(fsm.secTEXT.segname));
unsigned const d = slop + fsm.mhdri.sizeofcmds;
fsm.secTEXT.addr = fsm.segTEXT.vmaddr + d; // dummy
fsm.secTEXT.size = fsm.segTEXT.vmsize - d; // dummy
fsm.secTEXT.offset = d; // dummy
fsm.secTEXT.align = 3; // (1<<2)
fsm.secTEXT.reloff = 0;
fsm.secTEXT.nreloc = 0;
fsm.secTEXT.flags = S_REGULAR | S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS;
fsm.secTEXT.reserved1 = 0;
fsm.secTEXT.reserved2 = 0;
fsm.segLINK = fsm.segTEXT;
fsm.segLINK.cmdsize = sizeof(Mach_segment_command);
strncpy(fsm.segLINK.segname, "__LINKEDIT", sizeof(fsm.segLINK.segname));
fsm.segLINK.vmaddr = fsm.segTEXT.vmaddr + fsm.segTEXT.vmsize; // dummy
fsm.segLINK.vmsize = 0x1000; // dummy
fsm.segLINK.fileoff = fsm.segTEXT.fileoff + fsm.segTEXT.filesize;
fsm.segLINK.filesize = fsm.segLINK.vmsize;
fsm.segLINK.maxprot = VM_PROT_READ;
fsm.segLINK.initprot = VM_PROT_READ;
fsm.segLINK.nsects = 0;
fsm.cmdVERMIN.cmd = LC_VERSION_MIN_MACOSX; // LC_VERSION_MIN_IPHONEOS
fsm.cmdVERMIN.cmdsize = 4*4;
fsm.cmdVERMIN.version = (10<<16)|(12<<8);
fsm.cmdVERMIN.sdk = fsm.cmdVERMIN.version;
fsm.cmdSRCVER.cmd = LC_SOURCE_VERSION;
fsm.cmdSRCVER.cmdsize = 4*4;
fsm.cmdSRCVER.version = 0;
fsm.cmdSRCVER.__pad = 0;
sz_stub_main = sizeof(fsm);
stub_main = (unsigned char const *)&fsm;
}
break;
}
}
return true;
}
template class PackMachBase<MachClass_BE32>;
template class PackMachBase<MachClass_LE32>;
template class PackMachBase<MachClass_LE64>;
PackMachFat::PackMachFat(InputFile *f) : super(f)
{
bele = &N_BELE_RTP::le_policy; // sham
}
PackMachFat::~PackMachFat()
{
}
unsigned PackMachFat::check_fat_head()
{
struct Mach_fat_arch const *const arch = &fat_head.arch[0];
unsigned nfat = fat_head.fat.nfat_arch;
if (Mach_fat_header::FAT_MAGIC!=fat_head.fat.magic
|| N_FAT_ARCH < nfat) {
return 0;
}
for (unsigned j=0; j < nfat; ++j) {
unsigned const align = arch[j].align;
unsigned const mask = ~(~0u<<align);
unsigned const size = arch[j].size;
unsigned const offset = arch[j].offset;
if (align < 12 || align > 24) { // heuristic
throwUnknownExecutableFormat("align", 0);
}
if (mask > size) {
throwUnknownExecutableFormat("size", 0);
}
if (mask & offset
|| (unsigned)fi->st_size_orig() < size + offset
|| (unsigned)fi->st_size_orig() <= offset) { // redundant unless overflow
throwUnknownExecutableFormat("offset", 0);
}
}
return nfat;
}
const int *PackMachFat::getCompressionMethods(int /*method*/, int /*level*/) const
{
static const int m_nrv2e[] = { M_NRV2E_LE32, M_END };
return m_nrv2e; // sham
}
const int *PackMachFat::getFilters() const
{
static const int filters[] = { 0x49, FT_END };
return filters; // sham
}
void PackMachFat::pack(OutputFile *fo)
{
unsigned const in_size = this->file_size;
fo->write(&fat_head, sizeof(fat_head.fat) +
fat_head.fat.nfat_arch * sizeof(fat_head.arch[0]));
unsigned length = 0;
for (unsigned j=0; j < fat_head.fat.nfat_arch; ++j) {
unsigned base = fo->unset_extent(); // actual length
base += ~(~0u<<fat_head.arch[j].align) & (0-base); // align up
fo->seek(base, SEEK_SET);
fo->set_extent(base, ~0u);
ph.u_file_size = fat_head.arch[j].size;
fi->set_extent(fat_head.arch[j].offset, fat_head.arch[j].size);
fi->seek(0, SEEK_SET);
switch (fat_head.arch[j].cputype) {
case PackMachFat::CPU_TYPE_I386: {
typedef N_Mach::Mach_header<MachClass_LE32::MachITypes> Mach_header;
Mach_header hdr;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachI386 packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibI386 packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
} break;
case PackMachFat::CPU_TYPE_X86_64: {
typedef N_Mach::Mach_header<MachClass_LE64::MachITypes> Mach_header;
Mach_header hdr;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachAMD64 packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibAMD64 packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
} break;
case PackMachFat::CPU_TYPE_POWERPC: {
typedef N_Mach::Mach_header<MachClass_BE32::MachITypes> Mach_header;
Mach_header hdr;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachPPC32 packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibPPC32 packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
} break;
case PackMachFat::CPU_TYPE_POWERPC64LE: {
typedef N_Mach::Mach_header<MachClass_LE64::MachITypes> Mach_header;
Mach_header hdr;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachPPC64LE packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibPPC64LE packer(fi);
packer.initPackHeader();
packer.canPack();
packer.updatePackHeader();
packer.pack(fo);
}
} break;
} // switch cputype
fat_head.arch[j].offset = base;
length = fo->unset_extent();
fat_head.arch[j].size = length - base;
}
ph.u_file_size = in_size;
fi->set_extent(0, in_size);
fo->seek(0, SEEK_SET);
fo->rewrite(&fat_head, sizeof(fat_head.fat) +
fat_head.fat.nfat_arch * sizeof(fat_head.arch[0]));
fo->set_extent(0, length);
}
void PackMachFat::unpack(OutputFile *fo)
{
if (fo) { // test mode ("-t") sets fo = NULL
fo->seek(0, SEEK_SET);
fo->write(&fat_head, sizeof(fat_head.fat) +
fat_head.fat.nfat_arch * sizeof(fat_head.arch[0]));
}
unsigned const nfat = check_fat_head();
unsigned length;
for (unsigned j=0; j < nfat; ++j) {
unsigned base = (fo ? fo->unset_extent() : 0); // actual length
base += ~(~0u<<fat_head.arch[j].align) & (0-base); // align up
if (fo) {
fo->seek(base, SEEK_SET);
fo->set_extent(base, ~0u);
}
ph.u_file_size = fat_head.arch[j].size;
fi->set_extent(fat_head.arch[j].offset, fat_head.arch[j].size);
fi->seek(0, SEEK_SET);
switch (fat_head.arch[j].cputype) {
case PackMachFat::CPU_TYPE_I386: {
N_Mach::Mach_header<MachClass_LE32::MachITypes> hdr;
typedef N_Mach::Mach_header<MachClass_LE32::MachITypes> Mach_header;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachI386 packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibI386 packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
} break;
case PackMachFat::CPU_TYPE_X86_64: {
N_Mach::Mach_header<MachClass_LE64::MachITypes> hdr;
typedef N_Mach::Mach_header<MachClass_LE64::MachITypes> Mach_header;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachAMD64 packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibAMD64 packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
} break;
case PackMachFat::CPU_TYPE_POWERPC: {
N_Mach::Mach_header<MachClass_BE32::MachITypes> hdr;
typedef N_Mach::Mach_header<MachClass_BE32::MachITypes> Mach_header;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachPPC32 packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibPPC32 packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
} break;
case PackMachFat::CPU_TYPE_POWERPC64LE: {
N_Mach::Mach_header<MachClass_LE64::MachITypes> hdr;
typedef N_Mach::Mach_header<MachClass_LE64::MachITypes> Mach_header;
fi->readx(&hdr, sizeof(hdr));
if (hdr.filetype==Mach_header::MH_EXECUTE) {
PackMachPPC64LE packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
else if (hdr.filetype==Mach_header::MH_DYLIB) {
PackDylibPPC64LE packer(fi);
packer.initPackHeader();
packer.canUnpack();
packer.unpack(fo);
}
} break;
} // switch cputype
fat_head.arch[j].offset = base;
length = (fo ? fo->unset_extent() : 0);
fat_head.arch[j].size = length - base;
}
if (fo) {
fo->unset_extent();
fo->seek(0, SEEK_SET);
fo->rewrite(&fat_head, sizeof(fat_head.fat) +
fat_head.fat.nfat_arch * sizeof(fat_head.arch[0]));
}
}
bool PackMachFat::canPack()
{
struct Mach_fat_arch const *const arch = &fat_head.arch[0];
fi->readx(&fat_head, sizeof(fat_head));
unsigned const nfat = check_fat_head();
if (0==nfat)
return false;
for (unsigned j=0; j < nfat; ++j) {
fi->set_extent(arch[j].offset, arch[j].size);
fi->seek(0, SEEK_SET);
switch (arch[j].cputype) {
default:
infoWarning("unknown cputype 0x%x: %s",
(unsigned)arch[j].cputype, fi->getName());
return false;
case PackMachFat::CPU_TYPE_I386: {
PackMachI386 packer(fi);
if (!packer.canPack()) {
PackDylibI386 pack2r(fi);
if (!pack2r.canPack())
return false;
}
} break;
case PackMachFat::CPU_TYPE_X86_64: {
PackMachAMD64 packer(fi);
if (!packer.canPack()) {
PackDylibI386 pack2r(fi);
if (!pack2r.canPack())
return false;
}
} break;
case PackMachFat::CPU_TYPE_POWERPC: {
PackMachPPC32 packer(fi);
if (!packer.canPack()) {
PackDylibPPC32 pack2r(fi);
if (!pack2r.canPack())
return false;
}
} break;
case PackMachFat::CPU_TYPE_POWERPC64LE: {
PackMachPPC64LE packer(fi);
if (!packer.canPack()) {
PackDylibPPC64LE pack2r(fi);
if (!pack2r.canPack())
return false;
}
} break;
} // switch cputype
}
// info: currently the header is 36 (32+4) bytes before EOF
unsigned char buf[256];
fi->seek(-(off_t)sizeof(buf), SEEK_END);
fi->readx(buf, sizeof(buf));
checkAlreadyPacked(buf, sizeof(buf));
return true;
}
int PackMachFat::canUnpack()
{
struct Mach_fat_arch const *const arch = &fat_head.arch[0];
fi->readx(&fat_head, sizeof(fat_head));
unsigned const nfat = check_fat_head();
if (0 == nfat) {
return false;
}
for (unsigned j=0; j < nfat; ++j) {
fi->set_extent(arch[j].offset, arch[j].size);
fi->seek(0, SEEK_SET);
switch (arch[j].cputype) {
default: return false;
case PackMachFat::CPU_TYPE_I386: {
PackMachI386 packer(fi);
if (!packer.canUnpack()) {
PackDylibI386 pack2r(fi);
if (!pack2r.canUnpack())
return 0;
else
ph.format = pack2r.getFormat(); // FIXME: copy entire PackHeader
}
else
ph.format = packer.getFormat(); // FIXME: copy entire PackHeader
} break;
case PackMachFat::CPU_TYPE_X86_64: {
PackMachAMD64 packer(fi);
if (!packer.canUnpack()) {
PackDylibAMD64 pack2r(fi);
if (!pack2r.canUnpack())
return 0;
else
ph.format = pack2r.getFormat(); // FIXME: copy entire PackHeader
}
else
ph.format = packer.getFormat(); // FIXME: copy entire PackHeader
} break;
case PackMachFat::CPU_TYPE_POWERPC: {
PackMachPPC32 packer(fi);
if (!packer.canUnpack()) {
PackDylibPPC32 pack2r(fi);
if (!pack2r.canUnpack())
return 0;
else
ph.format = pack2r.getFormat(); // FIXME: copy entire PackHeader
}
else
ph.format = packer.getFormat(); // FIXME: copy entire PackHeader
} break;
case PackMachFat::CPU_TYPE_POWERPC64LE: {
PackMachPPC64LE packer(fi);
if (!packer.canUnpack()) {
PackDylibPPC64LE pack2r(fi);
if (!pack2r.canUnpack())
return 0;
else
ph.format = pack2r.getFormat(); // FIXME: copy entire PackHeader
}
else
ph.format = packer.getFormat(); // FIXME: copy entire PackHeader
} break;
} // switch cputype
}
return 1;
}
void PackMachFat::buildLoader(const Filter * /*ft*/)
{
assert(false);
}
Linker* PackMachFat::newLinker() const
{
return new ElfLinkerX86; // sham
}
void PackMachFat::list()
{
assert(false);
}
/* vim:set ts=4 sw=4 et: */